Pollen movement in a Malus sylvestris population and conclusions for conservation measures

2015 ◽  
Vol 15 (1) ◽  
pp. 12-20 ◽  
Author(s):  
Stefanie Reim ◽  
Anke Proft ◽  
Simone Heinz ◽  
Frank Lochschmidt ◽  
Monika Höfer ◽  
...  

Knowledge of pollen movement and frequency of interspecific hybridization in fragmented populations of rare species is a prerequisite for the implementation of conservation measures. In a large-scale study area (14,000 hectares) we analysed 297 Malus sylvestris trees with nine nuclear microsatellite markers. After open pollination of 564 offspring from 51 mother trees located in seven harvesting sites were investigated and genetic paternity analysis was performed. The paternal parent was identified for 213 offspring and the pollen dispersal distances between mother and pollen source were calculated. A large proportion of detected pollination events (42.4%) were observed within a radius of 50 m of the mother tree. The comparison of different tree densities indicated that with decreasing density the pollen dispersal distances increase. We observed pollination over long distances with a maximum of 10.7 km which is probably one of the reasons for a low spatial genetic structure within the M. sylvestris population and a stable genetic diversity in the offspring. Incorporating microsatellite data of 21 apple cultivars, a hybridization frequency of nearly 8% was determined. With decreasing tree density the number of hybridization events increased. Based on the results of our study an enhancement of the density of existing M. sylvestris populations is recommend to reduce the likelihood of hybridization. The production of young plants originated from seeds collected after open pollination is not advisable. Instead of that the seedlings for further reintroduction measures should be produced by controlled crossings in seed orchards to ensure ‘true type’ M. sylvestris individuals.

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Ning Xie ◽  
Ling-Na Chen ◽  
Yu-Ran Dong ◽  
Han-Qi Yang

Abstract Background So far, little is known in detail about mating systems of woody bamboos. Paternity analysis of offspring improved our understanding of these systems, and contributed to their germplasm conservation and genetic improvement. Results In this study, a paternity analysis of offspring from two consecutive mass or sporadically flowering events of Dendrocalamus membranaceus and D. sinicus were conducted to determine their mating system and pollen dispersal using the program COLONY based on simple sequence repeat (SSR) markers. Two sporadically flowering populations of D. sinicus (C1, C2) obtained relatively high paternity assignments rates (69.0–71.4%). Meanwhile, among three populations of D. membranaceus, the sporadically flowering population A also had much higher paternity assignments rates (56.4%) than mass flowering populations B1(28.6%) and B2 (42.5%). Both D. membranaceus and D. sinicus had mixed mating systems while their mating patterns were variable depending on pollination conditions. The maximum pollen dispersal distances were 90 m and 4378 m for D. membranaceus and D. sinicus populations, respectively, and the mating distances of these two species focused on ranges of ca. 0–50 m and 0–1500 m, respectively. Conclusions These results revealed for the first time variable mating patterns in woody bamboos. This suggests half-sib seeds from the same bamboo clump may have different male parents and it is crucial to clarify genetic origin in woody bamboos’ breeding programs. The results also indicate the importance of pollinators in the mating systems of tropical woody bamboos.


2015 ◽  
Vol 15 (2) ◽  
pp. 194-194 ◽  
Author(s):  
Stefanie Reim ◽  
Anke Proft ◽  
Simone Heinz ◽  
Frank Lochschmidt ◽  
Monika Höfer ◽  
...  

2002 ◽  
Vol 151 (2-3) ◽  
pp. 279-292 ◽  
Author(s):  
Emmanuel Paradis ◽  
Stephen R. Baillie ◽  
William J. Sutherland

2020 ◽  
Vol 93 (5) ◽  
pp. 652-661 ◽  
Author(s):  
Georgina Sola ◽  
Verónica El Mujtar ◽  
Leonardo Gallo ◽  
Giovanni G Vendramin ◽  
Paula Marchelli

Abstract Understanding the impact of management on the dispersal potential of forest tree species is pivotal in the context of global change, given the implications of gene flow on species evolution. We aimed to determine the effect of logging on gene flow distances in two Nothofagus species from temperate Patagonian forests having high ecological relevance and wood quality. Therefore, a total of 778 individuals (mature trees and saplings) of Nothofagus alpina and N. obliqua, from a single plot managed 20 years ago (2.85 hectares), were mapped and genotyped at polymorphic nuclear microsatellite loci. Historical estimates of gene dispersal distance (based on fine-scale spatial genetic structure) and contemporary estimates of seed and pollen dispersal (based on spatially explicit mating models) were obtained. The results indicated restricted gene flow (gene distance ≤ 45 m, both pollen and seed), no selfing and significant seed and pollen immigration from trees located outside the studied plot but in the close surrounding area. The size of trees (diameter at breast height and height) was significantly associated with female and/or male fertility. The significant fine-scale spatial genetic structure was consistent with the restricted seed and pollen dispersal. Moreover, both estimates of gene dispersal (historical and contemporary) gave congruent results. This suggests that the recent history of logging within the study area has not significantly influenced on patterns of gene flow, which can be explained by the silviculture applied to the stand. The residual tree density maintained species composition, and the homogeneous spatial distribution of trees allowed the maintenance of gene dispersal. The short dispersal distance estimated for these two species has several implications both for understanding the evolution of the species and for defining management, conservation and restoration actions. Future replication of this study in other Nothofagus Patagonian forests would be helpful to validate our conclusions.


2016 ◽  
Vol 65 (1) ◽  
pp. 1-11 ◽  
Author(s):  
J. M. S. Gonzaga ◽  
R. O. Manoel ◽  
A. C. B. Sousa ◽  
A. P. Souza ◽  
M. L. T. Moraes ◽  
...  

AbstractEucalyptus camaldulensishas potential for timber, energy, pulp and cellulose production in Brazil due to its ability to adapt to a variety of environmental conditions. The use of improved seeds, selected for economic growth traits, is necessary to increase productivity of commercial stands. Seed seedlings orchards (SSO) are one option for improved seed production. However, pollen contamination from unimproved populations, as well as non-random mating in the SSO, can decrease the predicted genetic gains in selected populations. Thus, we investigate the mating system, pollen flow and dispersal patterns in anE. camaldulensisSSO and progeny test (PT), established with seedlings collected in the SSO, using seven microsatellite loci. All trees in the SSO were mapped, sampled, and genotyped. For the PT, we sampled, genotyped, and measured the total height of seedlings from 25 families. We detected 10 % inbreeding in the PT, resulting mainly from selfing. Furthermore, we found a correlated mating rate of 18.5 % in the SSO, indicating that within the PT there are some full-sibs. Using paternity analysis, we found 14.7 % pollen contamination and a pattern of pollen dispersal between near neighbor trees in the SSO. We found 9.5 % of inbreeding depression for seedlings height. Due to pollen contamination and nonrandom mating in the SSO, the actual genetic gains for growth traits in the PT are probably lower than the predicted genetic gains. We discuss some management strategies in the SSO that can be used to increase genetic gains in commercial reforestation established using seeds collected from the SSO


Genetics ◽  
1998 ◽  
Vol 148 (2) ◽  
pp. 905-919
Author(s):  
Agnès Doligez ◽  
Claire Baril ◽  
Hélène I Joly

Abstract This paper presents the first theoretical study of spatial genetic structure within nonuniformly distributed continuous plant populations. A novel individual-based model of isolation by distance was constructed to simulate genetic evolution within such populations. We found larger values of spatial genetic autocorrelations in highly clumped populations than in uniformly distributed populations. Most of this difference was caused by differences in mean dispersal distances, but aggregation probably also produced a slight increase in spatial genetic structure. Using an appropriate level of approximation of the continuous distribution of individuals in space, we assessed the potential effects of density, seed and pollen dispersal, generation overlapping, and overdominance selection at an independent locus, on fine-scale genetic structure, by varying them separately in a few particular cases with extreme clumping. When selfing was allowed, all these input variables influenced both aggregation and spatial genetic structure. Most variations in spatial genetic structure were closely linked to variations in clumping and/or local density. When selfing was not allowed, spatial genetic structure was lower in most cases.


2021 ◽  
Author(s):  
Simon Dures ◽  
Chris Carbone ◽  
Andrew J Loveridge ◽  
Glyn Maude ◽  
Neil Midland ◽  
...  

Abstract Context: There has been limited research identifying large-scale functional connectivity of wildlife populations across sub-Saharan Africa, despite the increased focus on transboundary conservation networks. Objectives: This study set out to assess the functional connectivity of a highly mobile predator of conservation concern across the Kavango-Zambezi transboundary conservation area (KAZA) and the northern Central Kalahari Game Reserve (CKGR), covering almost 300,000km2 of Botswana, Namibia, Zambia and Zimbabwe.Methods: We analysed the nuclear diversity of 204 individual lions from across the metapopulation using Bayesian and multivariate statistics to assess population structure and recent migration. A maximum-likelihood method was used to determine average male dispersal distances to determine the potential for functional connectivity across the region.Results: The results are consistent with work identifying the existence of ecotypic differences between wetland and dryland lions, but also indicate hierarchical population structure further dividing the population into four geographic clusters; the Okavango Delta, the Central Kalahari, Kafue National Park, and the Hwange-Chobe complex. Analysis of dispersal distances of males suggests that reconnecting the clusters through conservation intervention should be successful in improving gene flow and connectivity across the region. Conclusions: While trans-boundary conservation areas may currently have limited gene flow and connectivity, there is potential for the restoration of functional connectivity via the natural dispersal of highly mobile species. However, the matrix of habitat through which such dispersing animals must traverse must be conducive to their movement and survival, highlighting the importance of land outside protected areas for the preservation of highly mobile animals such as lions.


Sign in / Sign up

Export Citation Format

Share Document