scholarly journals Resonant Gaps in the Scattered Cometary Population of the Trans-Neptunian Region

2002 ◽  
Vol 12 ◽  
pp. 251-252
Author(s):  
Tanya Taidakova ◽  
Leonid M. Ozernoy ◽  
Nick N. Gorkavyi

AbstractOur numerical simulations of the Edgeworth-Kuiper Belt objects gravitationally scattered by the four giant planets accounting for mean motion resonances reveal numerous resonant gaps in the distribution of the scattered population.

2002 ◽  
Vol 12 ◽  
pp. 225-228
Author(s):  
Hervé Beust ◽  
Philippe Thébault

AbstractTransient redshifted events monitored in the spectrum ofβPictoris have been interpreted as resulting from the evaporation of numerous comet-like bodies in the vicinity of this star. The dynamical origin for this phenomenon is attributed to mean-motion resonances (4:1 and 3:1) with a Jovian-like planet. Numerical simulations of this phenomenon are able to correctly reproduce the dynamical characteristics of the star-grazers observed. The numerical study allows to estimate the density of the planetesimal disk from which the bodies are supposed to originate, i.e. ∼ a few 108bodies per AU. A key issue with this model is the refilling of the resonances, as without refilling they should be cleared within a few 105yr and the observed phenomenon should stop. Collisions among planetesimals are a plausible mechanism. Collisional simulations show that collisions are able to sustain the observed phenomenon over much more than 106yr, provided the population of the disk is high enough. The mass density of this population is estimated to a few tens of Earth masses per AU, which is only marginally realistic. However, the mass estimate is very poorly constrained.


2010 ◽  
Vol 6 (S276) ◽  
pp. 300-303 ◽  
Author(s):  
Alexander J. Mustill ◽  
Mark C. Wyatt

AbstractMean motion resonances are a common feature of both our own Solar System and of extrasolar planetary systems. Bodies can be trapped in resonance when their orbital semi-major axes change, for instance when they migrate through a protoplanetary disc. We use a Hamiltonian model to thoroughly investigate the capture behaviour for first and second order resonances. Using this method, all resonances of the same order can be described by one equation, with applications to specific resonances by appropriate scaling. We focus on the limit where one body is a massless test particle and the other a massive planet. We quantify how the the probability of capture into a resonance depends on the relative migration rate of the planet and particle, and the particle's eccentricity. Resonant capture fails for high migration rates, and has decreasing probability for higher eccentricities, although for certain migration rates, capture probability peaks at a finite eccentricity. We also calculate libration amplitudes and the offset of the libration centres for captured particles, and the change in eccentricity if capture does not occur. Libration amplitudes are higher for larger initial eccentricity. The model allows for a complete description of a particle's behaviour as it successively encounters several resonances. The model is applicable to many scenarios, including (i) Planet migration through gas discs trapping other planets or planetesimals in resonances; (ii) Planet migration through a debris disc; (iii) Dust migration through PR drag. The Hamiltonian model will allow quick interpretation of the resonant properties of extrasolar planets and Kuiper Belt Objects, and will allow synthetic images of debris disc structures to be quickly generated, which will be useful for predicting and interpreting disc images made with ALMA, Darwin/TPF or similar missions. Full details can be found in Mustill & Wyatt (2011).


2015 ◽  
Vol 10 (S318) ◽  
pp. 1-8 ◽  
Author(s):  
Hubert Klahr ◽  
Andreas Schreiber

AbstractThe asteroids (more precisely: objects of the main asteroid belt) and Kuiper Belt objects (more precisely: objects of the cold classical Kuiper Belt) are leftovers of the building material for our earth and all other planets in our solar system from more than 4.5 billion years ago. At the time of their formation those were typically 100 km large objects. They were called planetesimals, built up from icy and dusty grains. In our current paradigm of planet formation it was turbulent flows and metastable flow patterns, like zonal flows and vortices, that concentrated mm to cm sized icy dust grains in sufficient numbers that a streaming instability followed by a gravitational collapse of these particle clump was triggered. The entire picture is sometimes referred to as gravoturbulent formation of planetesimals. What was missing until recently, was a physically motivated prediction on the typical sizes at which planetesimals should form via this process. Our numerical simulations in the past had only shown a correlation between numerical resolution and planetesimal size and thus no answer was possible (Johansen et al.2011). But with the lastest series of simulations on JUQUEEN (Stephan & Doctor 2015), covering all the length scales down to the physical size of actual planetesimals, we were able to obtain values for the turbulent particle diffusion as a function of the particle load in the gas. Thus, we have all necessary data at hand to feed a 'back of the envelope' calculation that predicts the size of planetesimals as result of a competition between gravitational concentration and turbulent diffusion. Using the diffusion values obtained in the numerical simulations it predicts planetesimal sizes on the order of 100 km, which suprisingly coincides with the measured data from both asteroids (Bottke et al.2005) as well from Kuiper Belt objects (Nesvorny et al.2011).


2002 ◽  
Vol 12 ◽  
pp. 243-244
Author(s):  
Ştefan Berinde

Nowadays many attempts are made to establish a qualitative and a quantitative connection between Kuiper Belt Population and Jupiter Family Comets. Basically, this can be thought as a diffusion process throughout the outer Solar System due to multiple close encounters with the giant planets. But, following the path of a body in such a process is not an easy task to be approached analytically nor numerically, because the motion is very chaotic and spread over a long time. A statistical approach seems to be a reasonable way and is the purpose of this paper.


2020 ◽  
Vol 638 ◽  
pp. A50
Author(s):  
K. Frantseva ◽  
M. Mueller ◽  
P. Pokorný ◽  
F. F. S. van der Tak ◽  
I. L. ten Kate

Context. In the Solar System, minor bodies and dust deliver various materials to planetary surfaces. Several exoplanetary systems are known to host inner and outer belts, analogues of the main asteroid belt and the Kuiper belt, respectively. Aims. We study the possibility that exominor bodies and exodust deliver volatiles and refractories to the exoplanets in the well-characterised system HR 8799. Methods. We performed N-body simulations to study the impact rates of minor bodies in the system HR 8799. The model consists of the host star, four giant planets (HR 8799 e, d, c, and b), 650 000 test particles representing the inner belt, and 1 450 000 test particles representing the outer belt. Moreover we modelled dust populations that originate from both belts. Results. Within a million years, the two belts evolve towards the expected dynamical structure (also derived in other works), where mean-motion resonances with the planets carve the analogues of Kirkwood gaps. We find that, after this point, the planets suffer impacts by objects from the inner and outer belt at rates that are essentially constant with time, while dust populations do not contribute significantly to the delivery process. We convert the impact rates to volatile and refractory delivery rates using our best estimates of the total mass contained in the belts and their volatile and refractory content. Over their lifetime, the four giant planets receive between 10−4 and 10−3 M⊕ of material from both belts. Conclusions. The total amount of delivered volatiles and refractories, 5 × 10−3 M⊕, is small compared to the total mass of the planets, 11 × 103 M⊕. However, if the planets were formed to be volatile-rich, their exogenous enrichment in refractory material may well be significant and observable, for example with JWST-MIRI. If terrestrial planets exist within the snow line of the system, volatile delivery would be an important astrobiological mechanism and may be observable as atmospheric trace gases.


2018 ◽  
Vol 489 (2) ◽  
pp. 2323-2329
Author(s):  
Ian Rabago ◽  
Jason H Steffen

ABSTRACT We examine the effects that planetary encounters have on the moon systems of ejected gas giant planets. We conduct a suite of numerical simulations of planetary systems containing three Jupiter-mass planets (with the innermost planet at 3 au) up to the point where a planet is ejected from the system. The ejected planet has an initial system of 100 test-particle moons. We determine the survival probability of moons at different distances from their host planet, measure the final distribution of orbital elements, examine the stability of resonant configurations, and characterize the properties of moons that are stripped from the planets. We find that moons are likely to survive in orbits with semi-major axes out beyond 200 planetary radii (0.1 au in our case). The orbital inclinations and eccentricities of the surviving moons are broadly distributed and include nearly hyperbolic orbits and retrograde orbits. We find that a large fraction of moons in two-body and three-body mean-motion resonances also survive planetary ejection with the resonance intact. The moon–planet interactions, especially in the presence of mean-motion resonance, can keep the interior of the moons molten for billions of years via tidal flexing, as is seen in the moons of the gas giant planets in the solar system. Given the possibility that life may exist in the subsurface ocean of the Galilean satellite Europa, these results have implications for life on the moons of rogue planets – planets that drift through our Galaxy with no host star.


2014 ◽  
Vol 9 (S310) ◽  
pp. 178-179
Author(s):  
Despoina K. Skoulidou ◽  
Kleomenis Tsiganis ◽  
Harry Varvoglis

AbstractThe problem of the origin of asteroids residing in the Jovian first-order mean motion resonances is still open. Is the observed population survivors of a much larger population formed in the resonance in primordial times? Here, we study the evolution of 182 long-lived asteroids in the 2:1 Mean Motion Resonance, identified in Brož & Vokrouhlické (2008). We numerically integrate their trajectories in two different dynamical models of the solar system: (a) accounting for the gravitational effects of the four giant planets (i.e. 4-pl) and (b) adding the terrestrial planets from Venus to Mars (i.e. 7-pl). We also include an approximate treatment of the Yarkovksy effect (as in Tsiganis et al.2003), assuming appropriate values for the asteroid diameters.


2020 ◽  
Vol 637 ◽  
pp. A87
Author(s):  
Jian Li ◽  
Zhihong Jeff Xia

Context. A recent observational census of Kuiper belt objects (KBOs) has unveiled anomalous orbital structures. This has led to the hypothesis that an additional ∼5 − 10 m⊕ planet exists. This planet, known as Planet 9, occupies an eccentric and inclined orbit at hundreds of astronomical units. However, the KBOs under consideration have the largest known semimajor axes at a >  250 AU; thus they are very difficult to detect. Aims. In the context of the proposed Planet 9, we aim to measure the mean plane of the Kuiper belt at a >  50 AU. In a comparison of the expected and observed mean planes, some constraints would be put on the mass and orbit of this undiscovered planet. Methods. We adopted and developed the theoretical approach of Volk & Malhotra (2017, AJ, 154, 62) to the relative angle δ between the expected mean plane of the Kuiper belt and the invariable plane determined by the eight known planets. Numerical simulations were constructed to validate our theoretical approach. Then similar to Volk & Malhotra (2017, AJ, 154, 62), we derived the angle δ for the real observed KBOs with 100 <  a <  200 AU, and the measurement uncertainties were also estimated. Finally, for comparison, maps of the theoretically expected δ were created for different combinations of possible Planet 9 parameters. Results. The expected mean plane of the Kuiper belt nearly coincides with the said invariable plane interior to a = 90 AU. But these two planes deviate noticeably from each other at a >  100 AU owing to the presence of Planet 9 because the relative angle δ could be as large as ∼10°. Using the 1σ upper limit of δ <  5° deduced from real KBO samples as a constraint, we present the most probable parameters of Planet 9: for mass m9 = 10 m⊕, orbits with inclinations i9 = 30°, 20°, and 15° should have semimajor axes a9 >  530 AU, 450 AU, and 400 AU, respectively; for m9 = 5 m⊕, the orbit is i9 = 30° and a9 >  440 AU, or i9 <  20° and a9 >  400 AU. In this work, the minimum a9 increases with the eccentricity e9 (∈[0.2, 0.6]) but not significantly.


2009 ◽  
Vol 103 (4) ◽  
pp. 343-364 ◽  
Author(s):  
Pavol Pástor ◽  
Jozef Klačka ◽  
Ladislav Kómar

Sign in / Sign up

Export Citation Format

Share Document