scholarly journals Survivability of moon systems around ejected gas giants

2018 ◽  
Vol 489 (2) ◽  
pp. 2323-2329
Author(s):  
Ian Rabago ◽  
Jason H Steffen

ABSTRACT We examine the effects that planetary encounters have on the moon systems of ejected gas giant planets. We conduct a suite of numerical simulations of planetary systems containing three Jupiter-mass planets (with the innermost planet at 3 au) up to the point where a planet is ejected from the system. The ejected planet has an initial system of 100 test-particle moons. We determine the survival probability of moons at different distances from their host planet, measure the final distribution of orbital elements, examine the stability of resonant configurations, and characterize the properties of moons that are stripped from the planets. We find that moons are likely to survive in orbits with semi-major axes out beyond 200 planetary radii (0.1 au in our case). The orbital inclinations and eccentricities of the surviving moons are broadly distributed and include nearly hyperbolic orbits and retrograde orbits. We find that a large fraction of moons in two-body and three-body mean-motion resonances also survive planetary ejection with the resonance intact. The moon–planet interactions, especially in the presence of mean-motion resonance, can keep the interior of the moons molten for billions of years via tidal flexing, as is seen in the moons of the gas giant planets in the solar system. Given the possibility that life may exist in the subsurface ocean of the Galilean satellite Europa, these results have implications for life on the moons of rogue planets – planets that drift through our Galaxy with no host star.

2021 ◽  
Vol 133 (8) ◽  
Author(s):  
Antoine C. Petit

AbstractRecent works on three-planet mean motion resonances (MMRs) have highlighted their importance for understanding the details of the dynamics of planet formation and evolution. While the dynamics of two-planet MMRs are well understood and approximately described by a one-degree-of-freedom Hamiltonian, little is known of the exact dynamics of three-body resonances besides the cases of zeroth-order MMRs or when one of the bodies is a test particle. In this work, I propose the first general integrable model for first-order three-planet mean motion resonances. I show that one can generalize the strategy proposed in the two-planet case to obtain a one-degree-of-freedom Hamiltonian. The dynamics of these resonances are governed by the second fundamental model of resonance. The model is valid for any mass ratio between the planets and for every first-order resonance. I show the agreement of the analytical model with numerical simulations. As examples of application, I show how this model could improve our understanding of the capture into MMRs as well as their role in the stability of planetary systems.


Icarus ◽  
2016 ◽  
Vol 274 ◽  
pp. 83-98 ◽  
Author(s):  
Tabaré Gallardo ◽  
Leonardo Coito ◽  
Luciana Badano

2007 ◽  
Vol 3 (S246) ◽  
pp. 199-208 ◽  
Author(s):  
R. A. Mardling

AbstractThree-body stability is fundamental to astrophysical processes on all length and mass scales from planetary systems to clusters of galaxies, so it is vital we have a deep and thorough understanding of this centuries-old problem. Here we summarize an analytical method for determining the stability of arbitrary three-body hierarchies which makes use of the chaos theory concept of resonance overlap. For the first time the dependence on all orbital elements and masses can be given explicitly via simple analytical expressions which contain no empirical parameters. For clarity and brevity, analysis in this paper is restricted to coplanar systems including a description of a practical algorithm for use in N-body and other applications. A Fortran routine for arbitrarily inclined systems is available from the author, and animations of stable and unstable systems are available at www.maths.monash.edu.au/~ro/Capri.


2011 ◽  
Vol 7 (S282) ◽  
pp. 127-128
Author(s):  
Eva Plávalová ◽  
Nina A. Solovaya ◽  
Eduard M. Pittich

AbstractThe modelling of the insufficient orbital elements of extra-solar planets (EPs) revolving around one component in a binary star system is investigated in the present paper. This problem is considered in the frame of the three-body problem using the analytical theory of Orlov & Solovaya (1998). In the general case, the motion is defined by the masses of the components and by the six pairs of the initial values of the Keplerian elements. For EPs, it is not possible to obtain the complete set of elements for the orbit, in particular, the ascending node and the angle of the inclination. So, it is possible the two different variants of orbital evolution of EPs depend on the initial conditions. In one case, the orbit is unstable. Using the stability conditions of Solovaya & Pittich (2004), which are presented by the angle of the mutual inclination of the orbits between the EP and distant star, we varied unknown angular elements and defined the regions with possible values of the elements for which the motion of EP stays stable. We applied these calculations to the particular specific EPs: HD19994b, HD196885Ab and HD222404b.


Icarus ◽  
2018 ◽  
Vol 304 ◽  
pp. 24-30 ◽  
Author(s):  
Evgeny A. Smirnov ◽  
Ilya S. Dovgalev ◽  
Elena A. Popova

2003 ◽  
Vol 1 ◽  
pp. 95-101
Author(s):  
F. Deleflie ◽  
P. Exertier ◽  
P. Berio ◽  
G. Metris ◽  
O. Laurain ◽  
...  

Abstract. The present study consists in studying the mean orbital motion of the CHAMP satellite, through a single long arc on a period of time of 200 days in 2001. We actually investigate the sensibility of its mean motion to its accelerometric data, as measures of the surface forces, over that period. In order to accurately determine the mean motion of CHAMP, we use “observed" mean orbital elements computed, by filtering, from 1-day GPS orbits. On the other hand, we use a semi-analytical model to compute the arc. It consists in numerically integrating the effects of the mean potentials (due to the Earth and the Moon and Sun), and the effects of mean surfaces forces acting on the satellite. These later are, in case of CHAMP, provided by an averaging of the Gauss system of equations. Results of the fit of the long arc give a relative sensibility of about 10-3, although our gravitational mean model is not well suited to describe very low altitude orbits. This technique, which is purely dynamical, enables us to control the decreasing of the trajectory altitude, as a possibility to validate accelerometric data on a long term basis.Key words. Mean orbital motion, accelerometric data


2021 ◽  
Vol 507 (4) ◽  
pp. 5796-5803
Author(s):  
I Milić Žitnik

ABSTRACT We examined the motion of asteroids across the three-body mean motion resonances (MMRs) with Jupiter and Saturn and with the Yarkovsky drift speed in the semimajor axis of the asteroids. The research was conducted using numerical integrations performed using the Orbit9 integrator with 84 000 test asteroids. We calculated time delays, dtr, caused by the seven three-body MMRs on the mobility of test asteroids with 10 positive and 10 negative Yarkovsky drift speeds, which are reliable for Main Belt asteroids. Our final results considered only test asteroids that successfully crossed over the MMRs without close approaches to the planets. We have devised two equations that approximately describe the functional relation between the average time 〈dtr〉 spent in the resonance, the strength of the resonance SR, and the semimajor axis drift speed da/dt (positive and negative) with the orbital eccentricities of asteroids in the range (0, 0.1). Comparing the values of 〈dtr〉 obtained from the numerical integrations and from the derived functional relations, we analysed average values of 〈dtr〉 in all three-body MMRs for every da/dt. The main conclusion is that the analytical and numerical estimates of the average time 〈dtr〉 are in very good agreement, for both positive and negative da/dt. Finally, this study shows that the functional relation we obtain for three-body MMRs is analogous to that previously obtained for two-body MMRs.


Sign in / Sign up

Export Citation Format

Share Document