Organic grain cropping systems to enhance ecosystem services

2013 ◽  
Vol 28 (2) ◽  
pp. 145-159 ◽  
Author(s):  
Michel A. Cavigelli ◽  
Steven B. Mirsky ◽  
John R. Teasdale ◽  
John T. Spargo ◽  
John Doran

AbstractOrganic grain cropping systems can enhance a number of ecosystem services compared with conventional tilled (CT) systems. Recent results from a limited number of long-term agricultural research (LTAR) studies suggest that organic grain cropping systems can also increase several ecosystem services relative to conventional no-till (NT) cropping systems: soil C sequestration and soil N fertility (N mineralization potential) can be greater while global warming potential (GWP) can be lower in organic systems that use animal manures and cover crops compared with conventional NT systems. However, soil erosion from organic systems and nitrous oxide (N2O, a greenhouse gas) emissions from manure-based organic systems appear to be greater than from conventional NT systems, though data are limited. Also, crop yields, on average, continue to be lower and labor requirements greater in organic than in both tilled and NT conventional systems. Ecosystem services provided by organic systems may be improved by expanding crop rotations to include greater crop phenological diversity, improving nutrient management, and reducing tillage intensity and frequency. More diverse crop rotations, especially those that include perennial forages, can reduce weed pressure, economic risk, soil erosion, N2O emissions, animal manure inputs, and soil P loading, while increasing grain yield and soil fertility. Side-dressing animal manures in organic systems may increase corn nitrogen use efficiency and also minimize animal manure inputs. Management practices that reduce tillage frequency and intensity in organic systems are being developed to reduce soil erosion and labor and energy needs. On-going research promises to further augment ecosystem services provided by organic grain cropping systems.

2020 ◽  
Author(s):  
Andrew Nicholas Kadykalo ◽  
Kris Johnson ◽  
Scott McFatridge ◽  
C. Scott Findlay

Although agricultural “best (or beneficial) management practices” (BMPs) first emerged to mitigate agro-environmental resource challenges, they may also enhance ‘non-provisioning’ ecosystem services. The enthusiasm for adopting BMPs partially depends on evidence that doing so will lead to agro-environmental benefits while not substantially reducing crop productivity or farmer income. We survey and synthesize evidence in the existing literature to document the joint effects on agricultural crop yield and 12 ecosystem service (ES) associated with implementation of 5 agricultural BMPs (crop rotations, cover crops, nutrient management, perennial vegetated buffers, reduced or no tillage). We also analyze the prevalence of co-benefits (‘win-win’), tradeoffs, and co-costs (‘lose-lose’) outcomes. On the basis of a set of contextual variables we then develop empirical models that predict the likelihood of co-benefits relative to tradeoffs, and co-costs. We found thirty-six studies investigating 141 combinations of crop yields and non-provisioning ES outcomes (YESs) in the relevant literatures covering the period 1983-2016. The scope of the review is global, but included studies are geographically concentrated in the U.S. Corn Belt (Midwestern United States). In the literature sample, reporting of co-benefits (26%) was much more prevalent than reporting of co-costs (4%) between yields and ES. Tradeoffs most often resulted in a reduction in crop yields and an increase in ES (28%); this was marginally greater than studies reporting a neutral influence on crop yields and an increase in ES (26%). Other Y/ES combinations were uncommon. Mixed-effects models indicated reduced tillage and crop rotations had generally positive associations with YESs. Temporal scale was an informative predictor suggesting studies with longer time scales resulted in greater positive outcomes on YESs, on average. Our results are a step towards identifying those contexts where co-benefits or partial improvement outcomes of BMPs are more likely to be realized, as well as the impact of particular practices on specific ES.


2016 ◽  
Author(s):  
Erica Kistner

Soil erosion is quickly becoming a severe problem throughout the Midwest and the situation is predicted to worsen unless more sustainable management practices are adopted. Management practices like reduced tillage and cover crops are recommended to help present soil erosion, enhance soil quality, and reduce greenhouse gas emissions.


2018 ◽  
Author(s):  
Erica Kistner

Soil erosion is quickly becoming a severe problem throughout the Midwest and the situation is predicted to worsen unless more sustainable management practices are adopted. Management practices like reduced tillage and cover crops are recommended to help present soil erosion, enhance soil quality, and reduce greenhouse gas emissions.


Author(s):  
Robert P. Larkin

Crop rotations and the inclusion of cover crops and green manures are primary tools in the sustainable management of soil-borne diseases in crop production systems. Crop rotations can reduce soil-borne disease through three general mechanisms: (1) serving as a break in the host-pathogen cycle; (2) by altering the soil physical, chemical, or biological characteristics to stimulate microbial activity and diversity; or (3) directly inhibiting pathogens through the release of suppressive or toxic compounds or the enhancement of specific antagonists. Brassicas, sudangrass, and related plant types are disease-suppressive crops well-known for their biofumigation potential but also have other effects on soil microbiology that are important in disease suppression. The efficacy of rotations for reducing soil-borne diseases is dependent on several factors, including crop type, rotation length, rotation sequence, and use of the crop (as full-season rotation, cover crop, or green manure). Years of field research with Brassica and non-Brassica rotation crops in potato cropping systems in Maine have documented the efficacy of Brassica green manures for the reduction of multiple soil-borne diseases. However, they have also indicated that these crops can provide disease control even when not incorporated as green manures and that other non-biofumigant crops (such as barley, ryegrass, and buckwheat) can also be effective in disease suppression. In general, all crops provided better disease control when used as green manure vs. as a cover crop, but the addition of a cover crop can improve control provided by most rotation crops. In long-term cropping system trials, rotations incorporating multiple soil health management practices, such as longer rotations, disease-suppressive rotation crops, cover crops, and green manures, and/or organic amendments have resulted in greater yield and microbial activity and fewer disease problems than standard rotations. These results indicate that improved cropping systems may enhance productivity, sustainability, and economic viability.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Abdullah A. Jaradat

Guidelines are needed to develop proper statistical analyses procedures and select appropriate models of covariance structures in response to expected temporal variation in long-term experiments. Cumulative yield, its temporal variance, and coefficient of variation were used in estimating and describing covariance structures in conventional and organic cropping systems of a long-term field experiment in a randomized complete block design. An 8-year database on 16 treatments (conventional and organic cropping systems, crop rotations, and tillage) was subjected to geostatistical, covariance structure, variance components, and repeated measures multivariate analyses using six covariance models under restricted maximum likelihood. Differential buildup of the cumulative effects due to crop rotations being repeated over time was demonstrated by decreasing structured and unstructured variances and increasing range estimates in the geostatistical analyses. The magnitude and direction of relationships between cumulative yield and its temporal variance, and coefficient of variation shaped the covariance structures of both cropping systems, crop rotations, and phases within crop rotations and resulted in significant deviations of organic management practices from their conventional counterparts. The unstructured covariance model was the best to fit most factor-variable combinations; it was the most flexible, but most costly in terms of computation time and number of estimated parameters.


2020 ◽  
Vol 25 (6) ◽  
pp. 929-952
Author(s):  
Martin A. Bolinder ◽  
Felicity Crotty ◽  
Annemie Elsen ◽  
Magdalena Frac ◽  
Tamás Kismányoky ◽  
...  

Abstract International initiatives are emphasizing the capture of atmospheric CO2 in soil organic C (SOC) to reduce the climatic footprint from agroecosystems. One approach to quantify the contribution of management practices towards that goal is through analysis of long-term experiments (LTEs). Our objectives were to analyze knowledge gained in literature reviews on SOC changes in LTEs, to evaluate the results regarding interactions with pedo-climatological factors, and to discuss disparities among reviews in data selection criteria. We summarized mean response ratios (RRs) and stock change rate (SCR) effect size indices from twenty reviews using paired comparisons (N). The highest RRs were found with manure applications (30%, N = 418), followed by aboveground crop residue retention and the use of cover crops (9–10%, N = 995 and 129), while the effect of nitrogen fertilization was lowest (6%, N = 846). SCR for nitrogen fertilization exceeded that for aboveground crop residue retention (233 versus 117 kg C ha−1 year−1, N = 183 and 279) and was highest for manure applications and cover crops (409 and 331 kg C ha−1 year−1, N = 217 and 176). When data allows, we recommend calculating both RR and SCR because it improves the interpretation. Our synthesis shows that results are not always consistent among reviews and that interaction with texture and climate remain inconclusive. Selection criteria for study durations are highly variable, resulting in irregular conclusions for the effect of time on changes in SOC. We also discuss the relationships of SOC changes with yield and cropping systems, as well as conceptual problems when scaling-up results obtained from field studies to regional levels.


Land ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 245 ◽  
Author(s):  
Mario V. Balzan ◽  
Renata Sadula ◽  
Laura Scalvenzi

Agricultural landscapes in the Mediterranean region may be considered as social-ecological systems that are important for biodiversity conservation whilst contributing to a wide range of ecosystem services. This literature review aims to identify the current state and biases of ecosystem service assessment in agroecosystems within the Mediterranean region, evaluate pressures impacting on agroecosystems and their services, and practices that promote ecosystem service synergies in Mediterranean agroecosystems. A total of 41 papers were selected for analysis from a set of 573 potentially relevant papers. Most of the selected papers focused on supporting, regulating and provisioning services, and mostly assessed ecosystem structure or services in the European Mediterranean context. Literature about benefits and values ascribed to by communities and stakeholders remain limited. Results presented here support the notion of multifunctional Mediterranean agroecosystems and multiple synergies were recorded in this review. Publications dealing with pressures that related to agricultural practices and demographic changes were in the majority and impact on different cropping systems. This review highlights the need to carry out integrated ecosystem service assessments that consider the multiple benefits derived from agroecosystems and which may be used to identify management practices that lead to the improvement of ecosystem services capacities and flows.


2011 ◽  
Vol 27 (3) ◽  
pp. 200-216 ◽  
Author(s):  
Sam E. Wortman ◽  
Tomie D. Galusha ◽  
Stephen C. Mason ◽  
Charles A. Francis

AbstractOrganic agriculture aims to build soil quality and provide long-term benefits to people and the environment; however, organic practices may reduce crop yields. This long-term study near Mead, NE was conducted to determine differences in soil fertility and crop yields among conventional and organic cropping systems between 1996 and 2007. The conventional system (CR) consisted of corn (Zea maysL.) or sorghum (Sorghum bicolor(L.) Moench)–soybean (Glycine max(L.) Merr.)–sorghum or corn–soybean, whereas the diversified conventional system (DIR) consisted of corn or sorghum–sorghum or corn–soybean–winter wheat (wheat,Triticum aestivumL.). The animal manure-based organic system (OAM) consisted of soybean–corn or sorghum–soybean–wheat, while the forage-based organic system (OFG) consisted of alfalfa (Medicago sativaL.)–alfalfa–corn or sorghum–wheat. Averaged across sampling years, soil organic matter content (OMC), P, pH, Ca, K, Mg and Zn in the top 15 cm of soil were greatest in the OAM system. However, by 2008 OMC was not different between the two organic systems despite almost two times greater carbon inputs in the OAM system. Corn, sorghum and soybean average annual yields were greatest in either of the two conventional systems (7.65, 6.36 and 2.60 Mg ha−1, respectively), whereas wheat yields were greatest in the OAM system (3.07 Mg ha−1). Relative to the mean of the conventional systems, corn yields were reduced by 13 and 33% in the OAM and OFG systems, respectively. Similarly, sorghum yields in the OAM and OFG systems were reduced by 16 and 27%, respectively. Soybean yields were 20% greater in the conventional systems compared with the OAM system. However, wheat yields were 10% greater in the OAM system compared with the conventional DIR system and 23% greater than yield in the OFG system. Alfalfa in the OFG system yielded an average of 7.41 Mg ha−1annually. Competitive yields of organic wheat and alfalfa along with the soil fertility benefits associated with animal manure and perennial forage suggest that aspects of the two organic systems be combined to maximize the productivity and sustainability of organic cropping systems.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1210
Author(s):  
Subodh Adhikari ◽  
Fabian D. Menalled

Ground beetles (Carabidae) are beneficial insects providing ecosystem services by regulating insect pests and weed seeds. Despite several studies conducted on ground beetles worldwide, there is a lack of knowledge on how these insects are affected by differently managed organic systems (e.g., tillage-based versus grazed-based) compared to that of chemical-based no-tillage conventional cropping systems. In a 5-year (2013–2017) study, we assessed the ground beetle communities in cover crops and winter wheat (Triticum aestivium L.) in Montana, USA, with three contrasting cropping systems: a chemically managed no-tillage, a tillage-based organic, and a livestock-integrated organic with reduced tillage. The first three years (i.e., 2013–2015) corresponded to the transition to organic period, while the last two (i.e., 2016–2017) were conducted in United States Department of Agriculture (USDA) organic-certified tillage-based and livestock-integrated organic systems. The experiment was designed with three management systems across three blocks as the whole plot variable and 5-year rotation of crop phases as the subplot variable. Using pitfall traps, we sampled ground beetles across all cover crop and winter wheat subplots for five years (n = 450). The data were analyzed using mixed effects models and PERMANOVA and visualized with non-metric multidimensional scaling ordination. Our study indicated that organically managed farms, whether tilled or grazed, enhance activity density, species richness, diversity, and evenness of ground beetles in the dryland row crop productions. Also, irrespective of farming system, cover crops supported higher species richness, diversity, and evenness of ground beetles than winter wheat. The ground beetle communities were mostly similar during the transition to organic period. However, during the established organic phase, cropping systems acted as contrasting ecological filters and beetle communities became dissimilar. Cover cropping affected ground beetle communities positively not only in organically managed systems but also in chemical-based conventional systems. Our study provides evidence supporting the adoption of ecologically-based cropping systems such as crop-livestock integration, organic farming, and cover cropping to enhance beneficial insects and their pest-regulation services.


2020 ◽  
Vol 8 (11) ◽  
pp. 1773
Author(s):  
Nakian Kim ◽  
María C. Zabaloy ◽  
Chance W. Riggins ◽  
Sandra Rodríguez-Zas ◽  
María B. Villamil

Metagenomics in agricultural research allows for searching for bioindicators of soil health to characterize changes caused by management practices. Cover cropping (CC) improves soil health by mitigating nutrient losses, yet the benefits depend on the tillage system used. Field studies searching for indicator taxa within these systems are scarce and narrow in their scope. Our goal was to identify bioindicators of soil health from microbes that were responsive to CC (three levels) and tillage (chisel tillage, no-till) treatments after five years under field conditions. We used rRNA gene-based analysis via Illumina HiSeq2500 technology with QIIME 2.0 processing to characterize the microbial communities. Our results indicated that CC and tillage differentially changed the relative abundances (RAs) of the copiotrophic and oligotrophic guilds. Corn–soybean rotations with legume–grass CC increased the RA of copiotrophic decomposers more than rotations with grass CC, whereas rotations with only bare fallows favored stress-tolerant oligotrophs, including nitrifiers and denitrifiers. Unlike bacteria, fewer indicator fungi and archaea were detected; fungi were poorly identified, and their responses were inconsistent, while the archaea RA increased under bare fallow treatments. This is primary information that allows for understanding the potential for managing the soil community compositions using cover crops to reduce nutrient losses to the environment.


Sign in / Sign up

Export Citation Format

Share Document