scholarly journals Supporting Beneficial Insects for Agricultural Sustainability: The Role of Livestock-Integrated Organic and Cover Cropping to Enhance Ground Beetle (Carabidae) Communities

Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1210
Author(s):  
Subodh Adhikari ◽  
Fabian D. Menalled

Ground beetles (Carabidae) are beneficial insects providing ecosystem services by regulating insect pests and weed seeds. Despite several studies conducted on ground beetles worldwide, there is a lack of knowledge on how these insects are affected by differently managed organic systems (e.g., tillage-based versus grazed-based) compared to that of chemical-based no-tillage conventional cropping systems. In a 5-year (2013–2017) study, we assessed the ground beetle communities in cover crops and winter wheat (Triticum aestivium L.) in Montana, USA, with three contrasting cropping systems: a chemically managed no-tillage, a tillage-based organic, and a livestock-integrated organic with reduced tillage. The first three years (i.e., 2013–2015) corresponded to the transition to organic period, while the last two (i.e., 2016–2017) were conducted in United States Department of Agriculture (USDA) organic-certified tillage-based and livestock-integrated organic systems. The experiment was designed with three management systems across three blocks as the whole plot variable and 5-year rotation of crop phases as the subplot variable. Using pitfall traps, we sampled ground beetles across all cover crop and winter wheat subplots for five years (n = 450). The data were analyzed using mixed effects models and PERMANOVA and visualized with non-metric multidimensional scaling ordination. Our study indicated that organically managed farms, whether tilled or grazed, enhance activity density, species richness, diversity, and evenness of ground beetles in the dryland row crop productions. Also, irrespective of farming system, cover crops supported higher species richness, diversity, and evenness of ground beetles than winter wheat. The ground beetle communities were mostly similar during the transition to organic period. However, during the established organic phase, cropping systems acted as contrasting ecological filters and beetle communities became dissimilar. Cover cropping affected ground beetle communities positively not only in organically managed systems but also in chemical-based conventional systems. Our study provides evidence supporting the adoption of ecologically-based cropping systems such as crop-livestock integration, organic farming, and cover cropping to enhance beneficial insects and their pest-regulation services.

2016 ◽  
Vol 30 (2) ◽  
pp. 559-572 ◽  
Author(s):  
Miriam F. Gieske ◽  
Donald L. Wyse ◽  
Beverly R. Durgan

Weeds often limit productivity of organic cropping systems. Radish is a fast-growing, potentially allelopathic cover crop that has the potential to improve weed management in organic systems. To evaluate the effect of radish on density, cover, and biomass of weeds in organically managed corn, 2-yr field experiments were conducted over 4 site years. Four cover-crop planting treatments (fall-only, spring-only, fall + spring, and no cover) were tested in factorial with three cultivation treatments (standard [three to four passes], false seedbed [standard with a false seedbed], and reduced [two passes]). All plots were tilled before planting. Shoot biomass averaged 3,057 kg ha−1for fall-seeded radish and 385 kg ha−1for spring-seeded radish. Radish cover crops generally did not improve management of weeds during the corn growing season. However, in the absence of a false seedbed, fall-seeded radish reduced field pennycress density from 9 to < 1 plant m−2and horseweed density from 6 to 2 plants m−2in spring in site years where these weeds were present. Fall-seeded radish also reduced cover of summer annual weeds during the fall cover-crop growing season from 4 to 0% in 1 site year, preventing these weeds from setting seed. Radish cover crops did not affect corn grain yield.


2020 ◽  
Vol 12 (15) ◽  
pp. 6103
Author(s):  
Ali reza Safahani Langeroodi ◽  
Roberto Mancinelli ◽  
Emanuele Radicetti

Quinoa cultivation is well-adapted to sustainable cropping systems, even if seed yield could be severely limited due to several constraints, such as weeds. Field trials were performed in Gorgan (Iran) to quantify the effects of agro-ecological service crops (rye, CCr; winter vetch, CCw; and no cover, CC0), tillage regimes (conventional tillage, CT; and no-tillage, ZT), and herbicide rates (100% rate, H100; 75% rate, H75; and without herbicide, H0). Weed characteristics and quinoa yield were measured. Quinoa seed yield was the highest in CCw-ZT-H100. Seed yield in H100 and H75 were higher compared with H0 (2.30 vs. 1.58 t ha−1, respectively). Under conventional tillage, 46% of weed seeds were observed in the 0–10 cm soil layer and 54% in 10–20 cm soil layers, respectively, while, under no-tillage, about 63% of weed seeds were located up to 10 cm of soil. Amaranthus retroflexus L. was the most abundant species. The total weed density was the lowest in CCr-ZT-H100 and tended to be higher in CC0 (30.9 plant m−2) and under CT (29.0 plant m−2). These findings indicate that cover crops have potential for managing weeds in quinoa; however, their inclusion should be supported by chemical means to maintain high seed.


2020 ◽  
Vol 87 ◽  
Author(s):  
Djavan Pinheiro Santos ◽  
Robélio Leandro Marchão ◽  
Ronny Sobreira Barbosa ◽  
Juvenal Pereira da Silva Junior ◽  
Everaldo Moreira da Silva ◽  
...  

ABSTRACT: The soil macrofauna is fundamental for the maintenance of soil quality. The aim of this study was to characterize the soil macrofauna under different species of cover crops, including monoculture or intercropping associated to two types of soil management in the southwest region of Piauí state. The study was carried out in an Oxisol (Latossolo Amarelo, according to Brazilian Soil Classification System) in the municipality of Bom Jesus, Piauí, distributed in 30 m2 plots. Testing and evaluation of the soil macrofauna were conducted in a 9 × 2 strip factorial design, with combinations between cover crops/consortia and soil management (with or without tillage), with four replications. Soil monoliths (0.25 × 0.25 m) were randomly sampled in each plot for macrofauna at 0‒0.1, 0.1‒0.2, and 0.2‒0.3 m depth, including surface litter. After identification and counting of soil organims, the relative density of each taxon in each depth was determined. The total abundance of soil macrofauna quantified under cover crops in the conventional and no-tillage system was 2,408 ind. m-2, distributed in 6 classes, 16 orders, and 31 families. The results of multivariate analysis show that grass species in sole cropping systems and no-tillage presents higher macrofauna density, in particular the taxonomic group Isoptera. No-tillage also provided higher richness of families, where Coleoptera adult were the second more abundant group in no-tillage and Hemiptera in conventional tillage.


Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 718 ◽  
Author(s):  
Giacomo Tosti ◽  
Paolo Benincasa ◽  
Michela Farneselli ◽  
Marcello Guiducci ◽  
Andrea Onofri ◽  
...  

In a 4-year study, the biannual crop rotation processing tomato–durum wheat was applied to three cropping systems: (i) an innovative organic coupled with no-tillage (ORG+) where an autumn-sown cover crop was terminated by roller-crimping and then followed by the direct transplantation of processing tomato onto the death-mulch cover; (ii) a traditional organic (ORG) with autumn-sown cover crop that was green manured and followed by processing tomato; and (iii) a conventional integrated low-input (INT) with bare soil during the fall–winter period prior to the processing tomato. N balance, yield and N leaching losses were determined. Innovative cropping techniques such as wheat–faba bean temporary intercropping and the direct transplantation of processing tomato into roll-crimped cover crop biomass were implemented in ORG+; the experiment was aimed at: (i) quantifying the N leaching losses; (ii) assessing the effect of N management on the yield and N utilization; and (iii) comparing the cropping system outputs (yield) in relation to extra-farm N sources (i.e., N coming from organic or synthetic fertilizers acquired from the market) and N losses. The effects of such innovations on important agroecological services such as yield and N recycling were assessed compared to those supplied by the other cropping systems. Independently from the soil management strategy (no till or inversion tillage), cover crops were found to be the key factor for increasing the internal N recycling of the agroecosystems and ORG+ needs a substantial improvement in terms of provisioning services (i.e., yield).


2013 ◽  
Vol 134 ◽  
pp. 121-132 ◽  
Author(s):  
Brigitte Dorn ◽  
Marina Stadler ◽  
Marcel van der Heijden ◽  
Bernhard Streit

Soil Systems ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 50 ◽  
Author(s):  
Patricia Dörr de Quadros ◽  
Adam R. Martin ◽  
Kateryna Zhalnina ◽  
Raquel Dias ◽  
Adriana Giongo ◽  
...  

There are multiple mechanisms by which enhanced diversity of plant communities improves soil structure and function. One critical pathway mediating this relationship is through changes to soil prokaryotic communities. Here, nine different cropping systems were studied to evaluate how legume and grass cover crops influence soil fertility and microbial communities in a maize-based no tillage system. The soil’s bacterial and archaeal communities were sequenced (Illumina GAIIx, 12 replicates for treatment) and correlated with eight different soil features. The microbial community composition differed widely between planting treatments, with three primary “community types” emerging in multivariate space: (1) A community type associated with bare soil linked with low P, low pH, and high aluminum [Al]; (2) a community type associated with Lablab beans linked with high soil N, total organic carbon and other base cation concentrations, and high pH; and (3) a community type of all other non-lablab planting arrangements linked with higher soil P (relative to bare soil), but lower soil fertility (N and base cations). Lablab-based arrangements also expressed the highest microbial richness and alpha diversity. The inclusion of Lablab in maize-based cropping systems represents a potential alternative to reduce the use of chemical fertilizers and increase the chemical and biological quality in agricultural soils under the no-tillage system.


2017 ◽  
Vol 47 (1) ◽  
pp. 72-79
Author(s):  
Lamara Freitas Brito ◽  
João Carlos Cardoso Galvão ◽  
Jeferson Giehl ◽  
Silvane de Almeida Campos ◽  
Steliane Pereira Coelho

ABSTRACT The no-tillage farming has become a popular practice in Brazil, but problems with weed control and plant nutrition persist under organic production systems. This study aimed at evaluating the agronomic traits and yield of maize, after using different off-season cover crops under two organic no-tillage systems. A randomized block design, with a 7 x 2 factorial scheme, being 7 treatments (weeds; black oat monoculture; sunflower; white lupin intercropped with black oat in rows; white lupin intercropped with black oat by broadcasting; white lupin monoculture; and no cover crop) and 2 cropping systems (maize alone and intercropped with jack bean), and four replications was used. The agronomic traits evaluated were plant height, first-ear insertion height, stem diameter, prolificacy, 1,000 grain weight, grain yield and nitrogen released at 60 days of mulch decomposition. White lupin straw in monoculture and intercropped with black oat release a higher amount of N during the decomposition process and, consequently, these treatments increase maize yield. Intercropping with jack bean within the same row as maize reduces its yield potential under an organic no-tillage system.


2018 ◽  
Vol 36 (0) ◽  
Author(s):  
C.T. FORTE ◽  
L. GALON ◽  
A.N. BEUTLER ◽  
F.W. REICHERT JR. ◽  
A.D. MENEGAT ◽  
...  

ABSTRACT: Phytosociological studies are groups of methods that aim at the identification, composition and distribution of plant species in a community. The objective of this study was to identify and quantify the main weeds found in beans, maize and soybean cultivated in no-tillage and conventional systems. The experimental design was a randomized block one, with four replications. Experiments were conducted during three consecutive years, with summer crop (bean, maize and soybean) treatments, no-tillage system (NTS) composed by the covers, black oat, vetch and forage radish, in addition to their intercrop. In the conventional planting system (CTS), the area was left fallow in the off-season. The shoot dry matter of the covers was evaluated in each crop. The evaluated variables were: frequency, density, abundance, dry matter and the importance value index of the species in the area. Eighteen species of weeds and 12 families were identified, with Asteraceae and Poaceae families showing the highest number of individuals. The shoot dry matter production presented a difference among the covers; the cover black oat alone and intercrop with radish and vetch stood out, with the highest averages in the 3 years of the experiments. Cropping systems and different cover crops within the no-tillage system interfered in the number of encontered species. The emergence of Euphorbia heterophylla was favored, while the emergence of Lolium multiflorum was inhibited. E. heterophylla was the most encountered in the NTS areas, and its germination was negatively influenced by soil mobilization. The intercrop of black oat and vetch provided maximum weed control in soybean.


2020 ◽  
pp. 1-8
Author(s):  
John A. Schramski ◽  
Christy L. Sprague ◽  
Karen A. Renner

Abstract Glyphosate-resistant horseweed is difficult to manage in no-tillage crop production fields and new strategies are needed. Cover crops may provide an additional management tool but narrow establishment windows and colder growing conditions in northern climates may limit the cover crop biomass required to suppress horseweed. Field experiments were conducted in 3 site-years in Michigan to investigate the effects of two fall-planted cover crops, cereal rye and winter wheat, seeded at 67 or 135 kg ha−1, to suppress horseweed when integrated with three preplant herbicide strategies in no-tillage soybean. The preplant strategies were control (glyphosate only), preplant herbicide without residuals (glyphosate + 2,4-D), and preplant herbicide with residuals (glyphosate + 2,4-D + flumioxazin + metribuzin). Cereal rye produced 79% more biomass and provided 12% more ground cover than winter wheat in 2 site-years. Increasing seeding rate provided 41% more cover biomass in 1 site-year. Cover crops reduced horseweed density 47% to 96% and horseweed biomass by 59% to 70% compared with no cover at the time of cover crop termination. Cover crops provided no additional horseweed suppression 5 wk after soybean planting if a preplant herbicide with or without residuals was applied, but reduced horseweed biomass greater than 33% in the absence of preplant herbicides. Cover crops did not affect horseweed suppression at the time of soybean harvest or influence soybean yield. Preplant herbicide with residuals and without residuals provided at least 52% and 20% greater soybean yield compared with the control at 2 site-years, respectively. Cereal rye and winter wheat provided early-season horseweed suppression at biomass levels below 1,500 kg ha−1, lower than previously reported. This could give growers in northern climates an effective strategy for suppressing horseweed through the time of POST herbicide application while reducing selection pressure for horseweed that is resistant to more herbicide sites of action.


Sign in / Sign up

Export Citation Format

Share Document