scholarly journals The Tully-Fisher Relation as a Function of Redshift: Disentangling Galaxy Evolution and Selection Biases

2006 ◽  
Vol 2 (S235) ◽  
pp. 3-7
Author(s):  
Nicole P. Vogt

AbstractWe review the status of current observations of the fundamental parameters of intermediate redshift (z ≤ 1.2) disk galaxies. Advances in instrumentation of 8-10m class telescopes have made possible detailed measurements of galaxy luminosity, morphology, kinematics and mass, in both the optical and the infrared passbands. By studying such well known star formation indicators as [OII]3727A (in the optical) and Hα (redshifted to the infrared), the internal velocity structure and star formation rates of galaxies can be traced through this entire redshift regime. The combination of throughput and optimum seeing conditions yields spectra which can be combined with high resolution multiband imaging to explore the evolution of galaxies of various morphologies, and to place constraints on current models of galaxy formation and star formation histories.Out to redshifts of unity, these data form a high redshift Tully-Fisher relation that spans four magnitudes and extends to well below L*, with no obvious change in shape or slope with respect to the local relation. A comparison of disk surface brightness between local and high redshift samples yields an offset in accordance with distance-dependent surface brightness selection effects, as can the apparent change in disk size with redshift for disks of a given mass. These results support low Ω0 models of formation, and provide further evidence for modest increases in luminosity with lookback time for the bulk of the observed field spiral galaxy population.Finally, a comparison of spatially resolved spectra versus integrated emission line widths for distant galaxies suggests that observational constraints bias each type of observational sample toward different sub-groups of galaxies, with different evolutionary histories. Like varying selection effects, this will lead to a wide range of projected evolutionary trends.

2020 ◽  
Vol 500 (3) ◽  
pp. 3394-3412
Author(s):  
Steven R Furlanetto

ABSTRACT In recent years, simple models of galaxy formation have been shown to provide reasonably good matches to available data on high-redshift luminosity functions. However, these prescriptions are primarily phenomenological, with only crude connections to the physics of galaxy evolution. Here, we introduce a set of galaxy models that are based on a simple physical framework but incorporate more sophisticated models of feedback, star formation, and other processes. We apply these models to the high-redshift regime, showing that most of the generic predictions of the simplest models remain valid. In particular, the stellar mass–halo mass relation depends almost entirely on the physics of feedback (and is thus independent of the details of small-scale star formation) and the specific star formation rate is a simple multiple of the cosmological accretion rate. We also show that, in contrast, the galaxy’s gas mass is sensitive to the physics of star formation, although the inclusion of feedback-driven star formation laws significantly changes the naive expectations. While these models are far from detailed enough to describe every aspect of galaxy formation, they inform our understanding of galaxy formation by illustrating several generic aspects of that process, and they provide a physically grounded basis for extrapolating predictions to faint galaxies and high redshifts currently out of reach of observations. If observations show violations from these simple trends, they would indicate new physics occurring inside the earliest generations of galaxies.


2020 ◽  
Vol 500 (2) ◽  
pp. 2000-2011
Author(s):  
Jindra Gensior ◽  
J M Diederik Kruijssen

ABSTRACT In simple models of galaxy formation and evolution, star formation is solely regulated by the amount of gas present in the galaxy. However, it has recently been shown that star formation can be suppressed by galactic dynamics in galaxies that contain a dominant spheroidal component and a low gas fraction. This ‘dynamical suppression’ is hypothesized to also contribute to quenching gas-rich galaxies at high redshift, but its impact on the galaxy population at large remains unclear. In this paper, we assess the importance of dynamical suppression in the context of gas regulator models of galaxy evolution through hydrodynamic simulations of isolated galaxies, with gas-to-stellar mass ratios of 0.01–0.20 and a range of galactic gravitational potentials from disc-dominated to spheroidal. Star formation is modelled using a dynamics-dependent efficiency per free-fall time, which depends on the virial parameter of the gas. We find that dynamical suppression becomes more effective at lower gas fractions and quantify its impact on the star formation rate as a function of gas fraction and stellar spheroid mass surface density. We combine the results of our simulations with observed scaling relations that describe the change of galaxy properties across cosmic time, and determine the galaxy mass and redshift range where dynamical suppression may affect the baryon cycle. We predict that the physics of star formation can limit and regulate the baryon cycle at low redshifts (z ≲ 1.4) and high galaxy masses (M* ≳ 3 × 1010 M⊙), where dynamical suppression can drive galaxies off the star formation main sequence.


Author(s):  
Marta B. Silva ◽  
Ely D. Kovetz ◽  
Garrett K. Keating ◽  
Azadeh Moradinezhad Dizgah ◽  
Matthieu Bethermin ◽  
...  

AbstractThis paper outlines the science case for line-intensity mapping with a space-borne instrument targeting the sub-millimeter (microwaves) to the far-infrared (FIR) wavelength range. Our goal is to observe and characterize the large-scale structure in the Universe from present times to the high redshift Epoch of Reionization. This is essential to constrain the cosmology of our Universe and form a better understanding of various mechanisms that drive galaxy formation and evolution. The proposed frequency range would make it possible to probe important metal cooling lines such as [CII] up to very high redshift as well as a large number of rotational lines of the CO molecule. These can be used to trace molecular gas and dust evolution and constrain the buildup in both the cosmic star formation rate density and the cosmic infrared background (CIB). Moreover, surveys at the highest frequencies will detect FIR lines which are used as diagnostics of galaxies and AGN. Tomography of these lines over a wide redshift range will enable invaluable measurements of the cosmic expansion history at epochs inaccessible to other methods, competitive constraints on the parameters of the standard model of cosmology, and numerous tests of dark matter, dark energy, modified gravity and inflation. To reach these goals, large-scale structure must be mapped over a wide range in frequency to trace its time evolution and the surveyed area needs to be very large to beat cosmic variance. Only a space-borne mission can properly meet these requirements.


2020 ◽  
Vol 501 (2) ◽  
pp. 1755-1765
Author(s):  
Andrew Pontzen ◽  
Martin P Rey ◽  
Corentin Cadiou ◽  
Oscar Agertz ◽  
Romain Teyssier ◽  
...  

ABSTRACT We introduce a new method to mitigate numerical diffusion in adaptive mesh refinement (AMR) simulations of cosmological galaxy formation, and study its impact on a simulated dwarf galaxy as part of the ‘EDGE’ project. The target galaxy has a maximum circular velocity of $21\, \mathrm{km}\, \mathrm{s}^{-1}$ but evolves in a region that is moving at up to $90\, \mathrm{km}\, \mathrm{s}^{-1}$ relative to the hydrodynamic grid. In the absence of any mitigation, diffusion softens the filaments feeding our galaxy. As a result, gas is unphysically held in the circumgalactic medium around the galaxy for $320\, \mathrm{Myr}$, delaying the onset of star formation until cooling and collapse eventually triggers an initial starburst at z = 9. Using genetic modification, we produce ‘velocity-zeroed’ initial conditions in which the grid-relative streaming is strongly suppressed; by design, the change does not significantly modify the large-scale structure or dark matter accretion history. The resulting simulation recovers a more physical, gradual onset of star formation starting at z = 17. While the final stellar masses are nearly consistent ($4.8 \times 10^6\, \mathrm{M}_{\odot }$ and $4.4\times 10^6\, \mathrm{M}_{\odot }$ for unmodified and velocity-zeroed, respectively), the dynamical and morphological structure of the z = 0 dwarf galaxies are markedly different due to the contrasting histories. Our approach to diffusion suppression is suitable for any AMR zoom cosmological galaxy formation simulations, and is especially recommended for those of small galaxies at high redshift.


2020 ◽  
Vol 500 (2) ◽  
pp. 2127-2145
Author(s):  
Christopher C Lovell ◽  
Aswin P Vijayan ◽  
Peter A Thomas ◽  
Stephen M Wilkins ◽  
David J Barnes ◽  
...  

ABSTRACT We introduce the First Light And Reionisation Epoch Simulations (FLARES), a suite of zoom simulations using the EAGLE model. We resimulate a range of overdensities during the Epoch of Reionization (EoR) in order to build composite distribution functions, as well as explore the environmental dependence of galaxy formation and evolution during this critical period of galaxy assembly. The regions are selected from a large $(3.2 \, \mathrm{cGpc})^{3}$ parent volume, based on their overdensity within a sphere of radius 14 h−1 cMpc. We then resimulate with full hydrodynamics, and employ a novel weighting scheme that allows the construction of composite distribution functions that are representative of the full parent volume. This significantly extends the dynamic range compared to smaller volume periodic simulations. We present an analysis of the galaxy stellar mass function (GSMF), the star formation rate distribution function (SFRF), and the star-forming sequence (SFS) predicted by FLARES, and compare to a number of observational and model constraints. We also analyse the environmental dependence over an unprecedented range of overdensity. Both the GSMF and the SFRF exhibit a clear double-Schechter form, up to the highest redshifts (z = 10). We also find no environmental dependence of the SFS normalization. The increased dynamic range probed by FLARES will allow us to make predictions for a number of large area surveys that will probe the EoR in coming years, carried out on new observatories such as Roman and Euclid.


2020 ◽  
Vol 644 ◽  
pp. A144
Author(s):  
D. Donevski ◽  
A. Lapi ◽  
K. Małek ◽  
D. Liu ◽  
C. Gómez-Guijarro ◽  
...  

The dust-to-stellar mass ratio (Mdust/M⋆) is a crucial, albeit poorly constrained, parameter for improving our understanding of the complex physical processes involved in the production of dust, metals, and stars in galaxy evolution. In this work, we explore trends of Mdust/M⋆ with different physical parameters and using observations of 300 massive dusty star-forming galaxies detected with ALMA up to z ≈ 5. Additionally, we interpret our findings with different models of dusty galaxy formation. We find that Mdust/M⋆ evolves with redshift, stellar mass, specific star formation rates, and integrated dust size, but that evolution is different for main-sequence galaxies than it is for starburst galaxies. In both galaxy populations, Mdust/M⋆ increases until z ∼ 2, followed by a roughly flat trend towards higher redshifts, suggesting efficient dust growth in the distant universe. We confirm that the inverse relation between Mdust/M⋆ and M⋆ holds up to z ≈ 5 and can be interpreted as an evolutionary transition from early to late starburst phases. We demonstrate that the Mdust/M⋆ in starbursts reflects the increase in molecular gas fraction with redshift and attains the highest values for sources with the most compact dusty star formation. State-of-the-art cosmological simulations that include self-consistent dust growth have the capacity to broadly reproduce the evolution of Mdust/M⋆ in main-sequence galaxies, but underestimating it in starbursts. The latter is found to be linked to lower gas-phase metallicities and longer dust-growth timescales relative to observations. The results of phenomenological models based on the main-sequence and starburst dichotomy as well as analytical models that include recipes for rapid metal enrichment are consistent with our observations. Therefore, our results strongly suggest that high Mdust/M⋆ is due to rapid dust grain growth in the metal-enriched interstellar medium. This work highlights the multi-fold benefits of using Mdust/M⋆ as a diagnostic tool for: (1) disentangling main-sequence and starburst galaxies up to z ∼ 5; (2) probing the evolutionary phase of massive objects; and (3) refining the treatment of the dust life cycle in simulations.


2019 ◽  
Vol 625 ◽  
pp. A111 ◽  
Author(s):  
Andrew Butler ◽  
Minh Huynh ◽  
Anna Kapińska ◽  
Ivan Delvecchio ◽  
Vernesa Smolčić ◽  
...  

The evolution of the comoving kinetic luminosity densities (Ωkin) of the radio loud high-excitation radio galaxies (RL HERGs) and the low-excitation radio galaxies (LERGs) in the ultimate XMM extragalactic survey south (XXL-S) field is presented. The wide area and deep radio and optical data of XXL-S have allowed the construction of the radio luminosity functions (RLFs) of the RL HERGs and LERGs across a wide range in radio luminosity out to high redshift (z = 1.3). The LERG RLFs display weak evolution: Φ(z)∝(1 + z)0.67 ± 0.17 in the pure density evolution (PDE) case and Φ(z)∝(1 + z)0.84 ± 0.31 in the pure luminosity evolution (PLE) case. The RL HERG RLFs demonstrate stronger evolution than the LERGs: Φ(z)∝(1 + z)1.81 ± 0.15 for PDE and Φ(z)∝(1 + z)3.19 ± 0.29 for PLE. Using a scaling relation to convert the 1.4 GHz radio luminosities into kinetic luminosities, the evolution of Ωkin was calculated for the RL HERGs and LERGs and compared to the predictions from various simulations. The prediction for the evolution of radio mode feedback in the Semi-Analytic Galaxy Evolution (SAGE) model is consistent with the Ωkin evolution for all XXL-S RL AGN (all RL HERGs and LERGs), indicating that the kinetic luminosities of RL AGN may be able to balance the radiative cooling of the hot phase of the IGM. Simulations that predict the Ωkin evolution of LERG equivalent populations show similar slopes to the XXL-S LERG evolution, suggesting that observations of LERGs are well described by models of SMBHs that slowly accrete hot gas. On the other hand, models of RL HERG equivalent populations differ in their predictions. While LERGs dominate the kinetic luminosity output of RL AGN at all redshifts, the evolution of the RL HERGs in XXL-S is weaker compared to what other studies have found. This implies that radio mode feedback from RL HERGs is more prominent at lower redshifts than was previously thought.


2009 ◽  
Vol 5 (H15) ◽  
pp. 329-329
Author(s):  
I. Olivares-Salaverri ◽  
Marcelo B. Ribeiro

This work aims to determine the feasibility of an assumed cosmological model by means of a detailed analysis of the brightness profiles of distant galaxies. Starting from the theory of Ellis & Perry (1979) connecting the angular diameter distance obtained from a relativistic cosmological model and the detailed photometry of galaxies, we assume the presently most accepted cosmology with Λ ¬ = 0 and seek to predict the brightness profile of a galaxy in a given redshift z. To do so, we have to make assumptions concerning the galactic brightness structure and evolution, assuming a scenario where the specific emitted surface brightness Be,νe can be characterized as, Be,νe (r,z) = B0(z)J(νe,z)f[r(z)/a(z)]. Here r is the intrinsic galactic radius, νe the emitted frequency, B0(z) the central surface brightness, J(νe,z) the spectral energy distribution (SED), f[r(z)/a(z)] characterizes the shape of the surface profile distribution and a(z) is the scaling radius. The dependence on z is due to the galactic evolution. As spacetime curvature affects the received surface brightness, the reciprocity theorem (Ellis 1971) allows us to predict the theoretical received surface brightness. So, we are able to compare the theoretical surface brightness with its equivalent observational data already available for high redshift galaxies in order to test the consistency of the assumed cosmological model. The function f[r(z)/a(z)] is represented in the literature by various different shapes, like the Hubble, Hubble-Oemler and Abell-Mihalas single parameter profiles, characterizing the galactic surface brightness quite well when the disk or bulge dependence is dominant. Sérsic and core-Sérsic profiles use two or more parameters and reproduce the galactic profile almost exactly (Trujillo et al. 2004). If we consider all wavelengths, the theory tells us that the total intensity is equal to the surface brightness, so the chosen bandwidth should include most of the SED. In order to analyze only the effect of the cosmological model in the surface brightness and minimize evolutionary effects, we assume that there exists a homogeneous class of objects, whose properties are similar in all redshifts, allowing us to carry out comparisons at different values of z. Studying the parameters that affect the galactic evolution, as well as in others geometrical tests, we will be able to infer some possible galaxy evolution which could reproduce a theoretical surface brightness profile, in order to compare with the observational data and reach conclusions about the observational feasibility of the underlying cosmological model.


2010 ◽  
Vol 6 (S277) ◽  
pp. 291-295
Author(s):  
D. J. Pisano ◽  
K. Rabidoux ◽  
C. A. Garland ◽  
R. Guzmán ◽  
F. J. Castander ◽  
...  

AbstractLuminous compact blue galaxies (LCBGs) are a diverse class of galaxies characterized by high luminosity, blue color, and high surface brightness that sit at the critical juncture of galaxies evolving from the blue to the red sequence. As part of our multi-wavelength survey of local LCBGs, we have been studying the HI content of these galaxies using both single-dish telescopes and interferometers. Our goals are to determine if single-dish HI observations represent a true measure of the dynamical mass of LCBGs and to look for signatures of recent interactions that may be triggering star formation in LCBGs. Our data show that while some LCBGs are undergoing interactions, many appear isolated. While all LCBGs contain HI and show signatures of rotation, the population does not lie on the Tully-Fisher relation nor can it evolve onto it. Furthermore, the HI maps of many LCBGs show signatures of dynamically hot components, suggesting that we are seeing the formation of a thick disk or spheroid in at least some LCBGs. There is good agreement between the HI and Hα kinematics for LCBGs, and both are similar in appearance to the Hα kinematics of high redshift star-forming galaxies. Our combined data suggest that star formation in LCBGs is primarily quenched by virial heating, consistent with model predictions.


2017 ◽  
Vol 471 (4) ◽  
pp. 4345-4354 ◽  
Author(s):  
Yuxiang Qin ◽  
Simon J. Mutch ◽  
Alan R. Duffy ◽  
Paul M. Geil ◽  
Gregory B. Poole ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document