scholarly journals Measuring the Star Formation Rate of the Universe at z ~ 1 from Hα with Multi-Object Near-Infrared Spectroscopy

2006 ◽  
Vol 2 (S235) ◽  
pp. 394-394
Author(s):  
Andrew Bunker ◽  
Michelle Doherty ◽  
Rob Sharp ◽  
Ian Parry ◽  
Gavin Dalton ◽  
...  

AbstractWe have demonstrated the first near-infrared multi-object spectrograph, CIRPASS, on the 4.2-m William Herschel Telescope (WHT) and the 3.9-m Anglo-Australian Telescope. We have conducted an Hα survey of 38 0.77 < z < 1 galaxies over ~100 arcmin2 of the Hubble Deep Field North and Flanking Fields, to determine star formation rates (SFRs) using CIRPASS on the WHT. This represents the first successful application of this technique to observing high redshift galaxies (Doherty et al. 2004). Stacking the spectra in the rest-frame, we find a lower limit (uncorrected for dust reddening) on the star formation rate density at redshift z = 1 of 0.04 M⊙ yr−1 Mpc−3 (Doherty et al. 2006). This implies rapid evolution in the star formation rate density from z = 0 to z = 1 which is proportional to (1 + z)3.1. We intend to extend our work with FMOS on Subaru as the evolSMURF project (the Evolution of Star-formation and Metallicity in the Universe at high Redshift with FMOS). This will represent nearly two orders-of-magnitude improvement on previous work, and for the first time will provide a sample of sufficient size to measure accurately the Hα luminosity function, and so determine the global star formation rate using the same indicator as used in local surveys. Using [O II]3727 Å, Hβ, [O III] 5007 Å and Hα redshifted into the z, J & H bands, we can chart the star formation history over 70% of the age of the Universe, affording complete coverage up to z = 1.6 with the same well-understood diagnostics. The line ratios will also allow the extinction and metallicity to be measured at z>1. This will resolve one of the long-standing puzzles in extragalactic astrophysics – the true evolution of the Madau-Lilly diagram of star formation density.

2020 ◽  
Vol 499 (4) ◽  
pp. 5941-5959
Author(s):  
L du Buisson ◽  
P Marchant ◽  
Ph Podsiadlowski ◽  
C Kobayashi ◽  
F B Abdalla ◽  
...  

ABSTRACT During the first three observing runs of the Advanced gravitational-wave detector network, the LIGO/Virgo collaboration detected several black hole binary (BHBH) mergers. As the population of detected BHBH mergers grows, it will become possible to constrain different channels for their formation. Here we consider the chemically homogeneous evolution (CHE) channel in close binaries, by performing population synthesis simulations that combine realistic binary models with detailed cosmological calculations of the chemical and star-formation history of the Universe. This allows us to constrain population properties, as well as cosmological and aLIGO/aVirgo detection rates of BHBH mergers formed through this pathway. We predict a BHBH merger rate at redshift zero of $5.8 \textrm {Gpc}^{-3} \textrm {yr}^{-1}$ through the CHE channel, to be compared with aLIGO/aVirgo’s measured rate of ${53.2}_{-28.2}^{+55.8} \text{Gpc}^{-3}\text{yr}^{-1}$, and find that eventual merger systems have BH masses in the range $17{-}43 \,\textrm {M}_{\odot }$ below the pair-instability supernova (PISN) gap, and ${\gt}124 \textrm {M}_{\odot }$ above the PISN gap. We investigate effects of momentum kicks during black hole formation, and calculate cosmological and magnitude limited PISN rates. We also study the effects of high-redshift deviations in the star formation rate. We find that momentum kicks tend to increase delay times of BHBH systems, and our magnitude limited PISN rate estimates indicate that current deep surveys should be able to detect such events. Lastly, we find that our cosmological merger rate estimates change by at most ${\sim}8{{\ \rm per\ cent}}$ for mild deviations of the star formation rate in the early Universe, and by up to ${\sim}40\,\text{per cent}$ for extreme deviations.


1999 ◽  
Vol 190 ◽  
pp. 8-14
Author(s):  
F.D.A. Hartwick

We use observations and evolutionary models of local objects to interpret a recent determination of the star-formation history of the universe. By fitting the global star-formation rate, the model predicts the ratio of spheroid to disk mass of ~1, an intergalactic medium (IGM) whose mass is ~2.3 times the mass in stars, and whose metallicity is ~0.1 Z⊙.


2006 ◽  
Vol 2 (14) ◽  
pp. 248-248
Author(s):  
Andrew J. Bunker ◽  
Elizabeth R. Stanway ◽  
Laurence P. Eyles ◽  
Richard S. Ellis ◽  
Richard G. McMahon ◽  
...  

AbstractWe discuss the selection of star-forming galaxies at z≃6 through the Lyman-break technique. Spitzer imaging implies many of these contain older stellar populations (>200Myr) which produce detectable Balmer breaks. The ages and stellar masses (∼1010M⊙) imply that the star formation rate density at earlier epochs may have been significantly higher than at z≃6, and might have played a key role in re-ionizing the universe.


1999 ◽  
Vol 183 ◽  
pp. 145-150
Author(s):  
Tomonori Totani

Star formation history in galaxies is strongly correlated to their present-day colors and the Hubble sequence can be considered as a sequence of different star formation history. Therefore we can model the cosmic star formation history based on the colors of local galaxies, and comparison to direct observations of luminosity density evolution at high redshift gives a new test for the cosmological parameters which is insensitive to merger history of galaxies. The luminosity density evolution in 0 < z < 1 observed by the Canada-France Redshift Survey in three wavebands of 2800Å, 4400Å, and 1μm indicates that the Λ-dominated flat universe with λ0 ∼ 0.8 (> 0.53 at 95%CL) is strongly favored.The cosmic star formation rate (SFR) at z > 2 is also compared to the latest data of the Hubble Deep Field including new data which were not incorporated in the previous work of Totani, Yoshii, & Sato (1997), and our model of the luminosity density of spiral galaxies taking account of gas infall is consistent with the observations. Starbursts in elliptical galaxies, which are expected from the galactic wind model, however overproduce SFRs and hence they should be formed at z ≳ 5 or their UV emission has to be hidden by dust extinction. The amount of metals in galactic winds and escaping ionizing photons are enough to contaminate the Lyα forests or to reionize the universe.


2009 ◽  
Vol 5 (S262) ◽  
pp. 257-260
Author(s):  
Christopher C. Hayward ◽  
Patrik Jonsson ◽  
Kai Noeske ◽  
Stijn Wuyts ◽  
T. J. Cox ◽  
...  

AbstractWe discuss our ongoing project analyzing N-body/smoothed-particle hydrodynamics simulations of isolated and merging galaxies, performed using GADGET-2 (Springel 2005), with the 3-D adaptive grid, polychromatic Monte Carlo radiative transfer code SUNRISE (Jonsson 2006). We apply commonly used UV, optical, and IR star formation rate (SFR) indicators to the integrated spectral energy distributions (SEDs) of the simulated galaxies in order to determine how well the SFR indicators recover the instantaneous SFR in the simulations. The models underlying each SFR indicator must necessarily make assumptions about physical properties of the galaxies, e.g., the star formation history (SFH), whereas all such properties are known in the simulations. This enables us to test and compare SFR indicators in a way that is complementary to observational studies. We present one preliminary result of interest: even after correcting the Hα luminosity for dust using the Calzetti et al. (2000) attenuation law the SFR is significantly underestimated for simulated galaxies with SFR ≳ 10 M⊙ yr−1.


2019 ◽  
Vol 15 (S352) ◽  
pp. 194-198
Author(s):  
Christina C. Williams

AbstractWe discuss the serendipitous discovery of a dusty high-redshift galaxy in a small (8 arcmin2) ALMA 3-mm survey Williams et al. (2019). The galaxy was previously unknown and is absent from existing multi-wavelength catalogs (“ALMA-only”). Using the ALMA position as prior, we perform forced deblended photometry to constrain its spectral energy distribution. The spectral energy distribution is well described by a massive (M* = 1010.8 M⊙) and highly obscured (AV ∼ 4) galaxy at redshift z = 5.5 ± 1.1 with star formation rate ∼ 300 M⊙yr−1. Our small survey area implies an uncertain but large contribution to the cosmic star formation rate density, similar to the contribution from all ultraviolet-selected galaxies combined at this redshift. This galaxy likely traces an abundant population of massive galaxies absent from current samples of infrared-selected or sub-millimeter galaxies, but with larger space densities, higher duty cycles, and significant contribution to the cosmic star-formation rate and stellar mass densities.


Author(s):  
James E. Upjohn ◽  
Michael J. I. Brown ◽  
Andrew M. Hopkins ◽  
Nicolas J. Bonne

AbstractWe measure the cosmic star formation history out to z = 1.3 using a sample of 918 radio-selected star-forming galaxies within the 2-deg2 COSMOS field. To increase our sample size, we combine 1.4-GHz flux densities from the VLA-COSMOS catalogue with flux densities measured from the VLA-COSMOS radio continuum image at the positions of I &lt; 26.5 galaxies, enabling us to detect 1.4-GHz sources as faint as 40 μJy. We find that radio measurements of the cosmic star formation history are highly dependent on sample completeness and models used to extrapolate the faint end of the radio luminosity function. For our preferred model of the luminosity function, we find the star formation rate density increases from 0.017 M⊙ yr−1 Mpc−3 at z ∼ 0.225 to 0.092 M⊙ yr−1 Mpc−3 at z ∼ 1.1, which agrees to within 40% of recent UV, IR and 3-GHz measurements of the cosmic star formation history.


Author(s):  
F. Zhang ◽  
L. Li ◽  
Z. Han

AbstractUsing the Yunnan-II evolutionary population synthesis models comprising binary stars, we find that the inclusion of binary stars can raise the derived stellar metallicity Z* and/or age t (degeneracy problem), raise the stellar mass M*, lower the gaseous metallicity Zgas and star formation rate (SFR) of galaxies. This means that a few stars form recently in galaxies, while more stars form during the entire evolution process when considering binary stars. If the degeneracy between t and Z* can be broken, its effect on the feedback process and star formation history can be determined.


Sign in / Sign up

Export Citation Format

Share Document