scholarly journals Dynamics of the Open Cluster NGC 188: A Comparison to an N-body Simulation of M67

2007 ◽  
Vol 3 (S246) ◽  
pp. 111-112
Author(s):  
Aaron M. Geller ◽  
Robert D. Mathieu ◽  
Hugh C. Harris ◽  
Robert D. McClure

AbstractWe present a detailed dynamical study of the old (7 Gyr) open cluster NGC 188. Our combined radial-velocity data set spans a baseline of 35 years, a magnitude range of 12 ≤ V ≤ 16.5, and a 1° diameter region on the sky. Our magnitude limits include solar-mass main-sequence stars, subgiants, giants, and blue stragglers, and our spatial coverage extends radially to 11.5 core radii. We have measured radial velocities for 1014 stars in the direction of NGC 188 with a precision of 0.4 km s−1, and have calculated radial-velocity membership probabilities for stars with ≥ 3 measurements. We find 420 stars to be high-probability cluster members, including 137 spectroscopic binaries. These detectable binaries all have orbital periods of less than 104 days, and thus are hard. We have derived orbit solutions for 67 member binary stars, and use our 35 main-sequence binaries with orbit solutions to compare the eccentricity and period distributions with simulated observations of the Hurley et al. (2005) model of M67 (4.5 Gyr). We also compare the spatial distributions of cluster member populations.

2020 ◽  
Vol 496 (2) ◽  
pp. 1355-1368
Author(s):  
J-L Halbwachs ◽  
F Kiefer ◽  
Y Lebreton ◽  
H M J Boffin ◽  
F Arenou ◽  
...  

ABSTRACT Double-lined spectroscopic binaries (SB2s) are one of the main sources of stellar masses, as additional observations are only needed to give the inclinations of the orbital planes in order to obtain the individual masses of the components. For this reason, we are observing a selection of SB2s using the SOPHIE spectrograph at the Haute-Provence observatory in order to precisely determine their orbital elements. Our objective is to finally obtain masses with an accuracy of the order of one per cent by combining our radial velocity (RV) measurements and the astrometric measurements that will come from the Gaia satellite. We present here the RVs and the re-determined orbits of 10 SB2s. In order to verify the masses, we will derive from Gaia, we obtained interferometric measurements of the ESO VLTI for one of these SB2s. Adding the interferometric or speckle measurements already published by us or by others for four other stars, we finally obtain the masses of the components of five binary stars, with masses ranging from 0.51 to 2.2 solar masses, including main-sequence dwarfs and some more evolved stars whose location in the HR diagram has been estimated.


2020 ◽  
Vol 633 ◽  
pp. A146 ◽  
Author(s):  
A. D. Alejo ◽  
J. F. González ◽  
M. E. Veramendi

Context. As part of a broader project on the role of binary stars in clusters, we present a spectroscopic study of the open cluster NGC 2546, which is a large cluster lacking previous spectroscopic analysis. Aims. We report the finding of two open clusters in the region of NGC 2546. For the two star groups, we determine radial velocity, parallax, proper motion, reddening, distance modulus, and age, using our spectroscopic observations and available photometric and astrometric data, mainly from the second Gaia data release (Gaia-DR2). We also determine the orbit of four spectroscopic binaries in these open clusters. Methods. From mid-resolution spectroscopic observations for 28 stars in the NGC 2546 region, we determined radial velocities and evaluate velocity variability. To analyze double-lined spectroscopic binaries, we used a spectral separation technique and fit the spectroscopic orbits using a least-squares code. The presence of two stellar groups is suggested by the radial velocity distribution and confirmed by available photometric and astrometric data. We applied a multi-criteria analysis to determine cluster membership, and obtained kinematic and physical parameters of the clusters. Results. NGC 2546 is actually two clusters, NGC 2546A and NGC 2546B, which are not physically related to each other. NGC 2546A has an age of about 180 Myr and a distance of 950 pc. It has a half-number radius of 8 pc and contains about 480 members brighter than G = 18 mag. NGC 2546B is a very young cluster (<10 Myr) located at a distance of 1450 pc. It is a small cluster with 80 members and a half-number radius of 1.6 pc. Stars less massive than 2.5 M⊙ in this cluster would be pre-main-sequence objects. We detected four spectroscopic binaries and determined their orbits. The two binaries of NGC 2546A contain chemically peculiar components: HD 68693 is composed of two mercury-manganese stars and HD 68624 has a Bp silicon secondary. Among the most massive objects of NGC 2546B, there are two binary stars: HD 68572, with P = 124.2 d, and CD -37 4344 with P = 10.4 d.


2011 ◽  
Vol 7 (S285) ◽  
pp. 75-80
Author(s):  
R. F. Griffin

AbstractGood measurements of visual binary stars (position angle and angular separation) have been made for nearly 200 years. Radial-velocity observers have exhibited less patience; when the orbital periods of late-type stars in the catalogue published in 1978 are sorted into bins half a logarithmic unit wide, the modal bin is the one with periods between 3 and 10 days. The same treatment of the writer's orbits shows the modal bin to be the one between 1000 and 3000 days. Of course the spectroscopists cannot quickly catch up the 200 years that the visual observers have been going, but many spectroscopic orbits with periods of decades, and a few of the order of a century, have been published. Technical developments have also been made in ‘visual’ orbit determination, and orbits with periods of only a few days have been determined for certain ‘visual’ binaries. In principle, therefore, the time domains of visual and spectroscopic binaries now largely overlap. Overlap is essential, as it is only by combining both techniques that orbits can be determined in three dimensions, as is necessary for the important objective of determining stellar masses accurately. Nevertheless the actual overlap—objects with accurate measurements by both techniques—remains disappointingly small. There have, however, been unforeseen benefits from the observation of spectroscopic binaries that have unconventionally long orbital periods, not a few of which have proved to be interesting and significant objects in their own right. It has also been shown that binary membership is more common than was once thought (orbits have even been determined for some of the IAU standard radial-velocity stars!); a recent study of the radial velocities of K giants that had been monitored for 45 years found a binary incidence of 30%, whereas a figure of 13.7% was given as recently as 2005 for a similar group.


1992 ◽  
Vol 151 ◽  
pp. 471-472
Author(s):  
David W. Latham ◽  
Robert D. Mathieu ◽  
Alejandra A. E. Milone ◽  
Robert J. Davis

In 1971 Roger Griffin and Jim Gunn began monitoring the radial velocities of most of the members brighter than the main-sequence turnoff in the old open cluster M67, primarily using the 200-inch Hale Telescope. In 1982 the torch was passed to Dave Latham and Bob Mathieu, who began monitoring many of the same stars with the 1.5-meter Tillinghast Reflector and the Multiple-Mirror Telescope on Mt. Hopkins. We have successively combined these two sets of data, plus some additional CORAVEL velocities kindly provided by Michel Mayor, to obtain 20 years of time coverage (e.g. Mathieu et al. 1986). Among the stars brighter than magnitude V = 12.7 we have already published orbits for 22 spectroscopic binaries (Mathieu et al. 1990). At Mt. Hopkins an extension of this survey to many of the cluster members down to magnitude V = 15.5 has already yielded thirteen additional orbital solutions, with the promise of many more to come.


1984 ◽  
Vol 88 ◽  
pp. 283-288
Author(s):  
Hugh C. Harris

AbstractA survey of F, G, and W supergiants has been carried out with the DAO radial velocity spectrometer, an efficient instrument for detecting low-amplitude velocity variations in cool stars. Observations of 78 stars over five seasons show generally good agreement with OORAVEL results for spectroscopie binaries. The majority of supergiants show low-amplitude variability, with amplitudes typically 1 to 2 km s−1. The width of the cross-correlation profile has been measured for 58 supergiants. It reveals 14 stars with unusually broad lines, indicative of rotation velocities of 15 to 35 km s−1. Several have short-period binary companions and may be in synchronous rotation. The other broad-lined stars are apparently single or with long orbital periods; they may be making their first transition from the main sequence to become red supergiants.


1992 ◽  
Vol 135 ◽  
pp. 155-157 ◽  
Author(s):  
David W. Latham ◽  
Robert D. Mathieu ◽  
Alejandra A.E. Milone ◽  
Robert J. Davis

AbstractFor almost 400 members of M67 we have accumulated about 5,000 precise radial velocities. Already we have orbital solutions for more than 32 spectroscopic binaries in M67. Many of these orbits were derived by combining the Palomar and CfA observations, thus extending the time coverage to more than 20 years. The distribution of eccentricity versus period shows evidence for tidal circularization on the main sequence. The transition from circular orbits is fairly clean. Excluding the blue stragglers, the first eccentric orbit has a period of 11.0 days, while the last circular orbit has a period of 12.4 days. For longer periods the distribution of eccentricity is the same as for field stars. The blue straggler S1284 has an eccentric orbit despite its short period of 4.2 days.


2004 ◽  
Vol 215 ◽  
pp. 170-176
Author(s):  
S. Meibom ◽  
R. D. Mathieu

We present an ongoing study on tidal interactions in late-type close binary stars. New results on tidal circularization are combined with existing data to test and constrain theoretical predictions of tidal circularization in the pre-main-sequence (PMS) phase and throughout the main-sequence phase of stellar evolution. Current data suggest that tidal circularization during the PMS phase sets the tidal cutoff period for binary populations younger than ~ 1 Gyr. Binary populations older than ~ 1 Gyr show increasing tidal cutoff periods with age, consistent with active main-sequence tidal circularization.


2001 ◽  
Vol 200 ◽  
pp. 165-168 ◽  
Author(s):  
Eike W. Guenther ◽  
Viki Joergens ◽  
Ralph Neuhäuser ◽  
Guillermo Torres ◽  
Natalie Stout Batalha ◽  
...  

We give here an overview of the current state of our survey for pre-main sequence spectroscopic binaries. Up to now we have taken 739 spectra of 250 pre-main sequence stars. We find that 8% of the stars show significant radial velocity variations, and are thus most likely spectroscopic binaries. In addition to the targets showing radial velocity variations, 6% of the targets are double-lined spectroscopic binaries i.e., the total fraction of spectroscopic binaries is expected to be about 14%. All short-period SB2s are monitored photometrically in order to search for eclipses. An eclipsing SB2 would allow the direct measurement of the masses of both stellar components. Measurements of the stellar masses together with determinations of the stellar radii are a crucial test of evolutionary tracks of pre-main sequence stars.


1993 ◽  
Vol 138 ◽  
pp. 137-142 ◽  
Author(s):  
Wilhelm Seggewiss

AbstractThis paper presents a new statistical investigation of peculiar A-type stars (Am, Ap, Hg-Mn) among spectroscopic binary (SB) stars. The relative frequency of Am (CP 1) stars is 55% in the spectral range A1 to A6 of main-sequence stars. The Ap (CP 2) stars amount to 15% in the range B9 to A2. The Hg-Mn stars are concentrated to the spectral types B8 to AO and reach a relative frequency of 23%. The Am SB stars have the shortest orbital periods and the smallest eccentricities (30% circular) whereas the Ap SB stars show a strong tendency to long periods and highly eccentric orbits (only 10% circular). The masses of the Am stars agree with the masses of non-peculiar SB stars of corresponding spectral type.


2008 ◽  
Vol 4 (S258) ◽  
pp. 141-152
Author(s):  
Elizabeth J. Jeffery

AbstractOpen clusters have long been objects of interest in astronomy. As a good approximation of essentially pure stellar populations, they have proved very useful for studies in a wide range of astrophysically interesting questions, including stellar evolution and atmospheres, the chemical and dynamical evolution of our Galaxy, and the structure of our Galaxy. Of fundamental importance to our understanding of open clusters is accurate determinations of cluster ages. Currently there are two main techniques for independently determining the ages of stellar populations: main sequence evolution theory (via cluster isochrones) and white dwarf cooling theory. We will provide an overview of these two methods, the current level of agreement between them, as well as a look to the current state of increasing precision in the determination of each. Particularly I will discuss the comprehensive data set collection that is being done by the WIYN Open Cluster Study, as well as a new Bayesian statistical technique that has been developed by our group and its applications in improving and determining white dwarf ages of open clusters. I will review the so-called bright white dwarf technique, a new way of measuring cluster ages with just the bright white dwarfs. I will discuss the first application of the Bayesian technique to the Hyades, also demonstrating the first successful application of the bright white dwarf technique. These results bring the white dwarf age of the Hyades into agreement with the main sequence turn off age for the first time.


Sign in / Sign up

Export Citation Format

Share Document