scholarly journals Central Dynamics of Globular Clusters: the Case for a Black Hole in ω Centauri

2007 ◽  
Vol 3 (S246) ◽  
pp. 341-345
Author(s):  
Eva Noyola ◽  
Karl Gebhardt ◽  
Marcel Bergmann

AbstractThe globular cluster ω Centauri is one of the largest and most massive members of the Galactic system. Its classification as a globular cluster has been challenged making it a candidate for being the stripped core of an accreted dwarf galaxy; this and the fact that it has one of the largest velocity dispersions for star clusters in our galaxy makes it an interesting candidate for harboring an intermediate mass black hole. We measure the surface brightness profile from integrated light on an HST/ACS image, and find a central power-law cusp of logarithmic slope -0.08. We also analyze Gemini GMOS-IFU kinematic data for a 5”x5” field centered on the nucleus of the cluster, as well as for a field 14″ away. We detect a clear rise in the velocity dispersion from 18.6 kms−1 at 14″ to 23 kms−1 in the center. Given the very large core in ω Cen (2.58'), an increase in the dispersion in the central 10″ is difficult to attribute to stellar remnants, since it requires too many dark remnants and the implied configuration would dissolve quickly given the relaxation time in the core. However, the increase could be consistent with the existence of a central black hole. Assuming a constant M/L for the stars within the core, the dispersion profile from these data and data at larger radii implies a black hole mass of 4.0+0.75−1.0×104M⊙. We have also run flattened, orbit-based models and find a similar mass. In addition, the no black hole case for the orbit model requires an extreme amount of radial anisotropy, which is difficult to preserve given the short relaxation time of the cluster.

1985 ◽  
Vol 113 ◽  
pp. 421-422
Author(s):  
Richard B. Larson

Many presentations at this meeting have discussed the phenomenon of “core collapse”, and it seems agreed that a stellar system like a globular cluster will, within a few half-mass relaxation times, undergo a runaway increase in central density and achieve a nearly singular density distribution with a logarithmic gradient slightly steeper than −2. The collapse is halted by the formation of binaries when the core has shrunk to contain only a small number of stars, and the system subsequently expands gradually while maintaining a density profile approximating that of a singular isothermal sphere. Light profiles resembling the predicted nearly singular form have been found in a small number of globular clusters (Djorgovski, this meeting), but a puzzle remains in that many more clusters should have undergone core collapse, yet they show quite flat light profiles in their cores.


2019 ◽  
Vol 489 (4) ◽  
pp. 4783-4790 ◽  
Author(s):  
Kristen C Dage ◽  
Stephen E Zepf ◽  
Arash Bahramian ◽  
Jay Strader ◽  
Thomas J Maccarone ◽  
...  

ABSTRACT RZ2109 is the first of several extragalactic globular clusters shown to host an ultraluminous X-ray source. RZ2109 is particularly notable because optical spectroscopy shows it has broad, luminous [O iii] λλ4959,5007 emission, while also having no detectable hydrogen emission. The X-ray and optical characteristics of the source in RZ2109 make it a good candidate for being a stellar mass black hole accreting from a white dwarf donor (i.e. an ultracompact black hole X-ray binary). In this paper we present optical spectroscopic monitoring of the [O iii]5007 emission line from 2007 to 2018. We find that the flux of the emission line is significantly lower in recent observations from 2016 to 2018 than it was in earlier observations in 2007–2011. We also explore the behaviour of the emission line shape over time. Both the core and the wings of the emission line decline over time, with some evidence that the core declines more rapidly than the wings. However, the most recent observations (in 2019) unexpectedly show the emission line core rebrightening


2020 ◽  
Vol 492 (4) ◽  
pp. 5102-5120
Author(s):  
Ryan Leaman ◽  
Tomás Ruiz-Lara ◽  
Andrew A Cole ◽  
Michael A Beasley ◽  
Alina Boecker ◽  
...  

ABSTRACT Recent photometric observations revealed a massive, extended (MGC ≳ 105 M⊙; Rh ∼ 14 pc) globular cluster (GC) in the central region (D3D ≲ 100 pc) of the low-mass (M* ∼ 5 × 106 M⊙) dwarf irregular galaxy Pegasus. This massive GC offers a unique opportunity to study star cluster inspiral as a mechanism for building up nuclear star clusters, and the dark matter (DM) density profile of the host galaxy. Here, we present spectroscopic observations indicating that the GC has a systemic velocity of ΔV = 3 ± 8 km s−1 relative to the host galaxy, and an old, metal-poor stellar population. We run a suite of orbital evolution models for a variety of host potentials (cored to cusped) and find that the GC’s observed tidal radius (which is ∼3 times larger than the local Jacobi radius), relaxation time, and relative velocity are consistent with it surviving inspiral from a distance of Dgal ≳ 700 pc (up to the maximum tested value of Dgal = 2000 pc). In successful trials, the GC arrives to the galaxy centre only within the last ∼1.4 ± 1 Gyr. Orbits that arrive in the centre and survive are possible in DM haloes of nearly all shapes, however to satisfy the GC’s structural constraints a galaxy DM halo with mass MDM ≃ 6 ± 2 × 109 M⊙, concentration c ≃ 13.7 ± 0.6, and an inner slope to the DM density profile of −0.9 ≤ γ ≤ −0.5 is preferred. The gas densities necessary for its creation and survival suggest the GC could have formed initially near the dwarf’s centre, but then was quickly relocated to the outskirts where the weaker tidal field permitted an increased size and relaxation time – with the latter preserving the former during subsequent orbital decay.


2019 ◽  
Vol 491 (4) ◽  
pp. 5793-5793
Author(s):  
Jongsuk Hong ◽  
Enrico Vesperini ◽  
Abbas Askar ◽  
Mirek Giersz ◽  
Magdalena Szkudlarek ◽  
...  

1988 ◽  
Vol 126 ◽  
pp. 583-584
Author(s):  
Robert M. Light ◽  
P. Seitzer

The present study is concerned with the examination of properties of stars in the core of the Fornax dwarf spheroidal galaxy. Previous studies have shown that Fornax has a very diverse stellar population. Four of the globular clusters associated with Fornax were found to have metallicities significantly lower than the mean metallicity of the field population of the galaxy (Buonanno et al. 1985); these clusters point out an older, metal-poor population. Also, there are a number of luminous carbon stars, which are indicative of a much younger population (see Mould and Aaronson 1986). Studies of the field population of Fornax (Demers, Kunkel, and Hardy, 1979; Buonanno et al., 1985) have shown a dispersion in metallicity. We have measured a large sample of giant branch stars, enabling a good determination of mean properties of the Fornax stellar population, as well as allowing a comparison of stars as a function of distance from the center of Fornax.


1988 ◽  
Vol 126 ◽  
pp. 607-608
Author(s):  
Tod R. Lauer ◽  
John Kormendy

We have observed the central distribution of globular clusters in M 87. The core radius of the cluster system is an order of magnitude larger than that of the underlying galaxy.


2019 ◽  
Vol 488 (1) ◽  
pp. 482-494 ◽  
Author(s):  
C B Pereira ◽  
N A Drake ◽  
F Roig

Abstract We present a new abundance analysis of HD 55496, previously known as a metal-poor barium star. We found that HD 55496 has a metallicity [Fe/H]  = −1.55 and is s-process enriched. We find that HD 55496 presents four chemical peculiarities: (i) a Na–O abundance anticorrelation; (ii) it is aluminium rich; (iii) it is carbon poor for an s-process enriched star, and (iv) the heavy second s-process peak elements, such as Ba, La, Ce, and Nd, present smaller abundances than the light s-process elements, such as Sr, Y, and Zr, which is not usually observed among the chemically peculiar binary stars at this metallicity. The heavy-element abundance pattern suggests that the main source of the neutrons is the 22Ne(α,n)25Mg reaction. Taking all these abundance evidences together into consideration strongly suggests that HD 55496 is a ‘second-generation of globular cluster stars’ formed from gas already strongly enriched in s-process elements and now is a field halo object. Our dynamical analysis, however, indicates that the past encounter probabilities with the known globular clusters are very low ($\le \!6{{\ \rm per\ cent}}$). This evidence, together with the retrograde motion, points to a halo intruder possibly originated from the tidal disruption of a dwarf galaxy.


2020 ◽  
Vol 496 (2) ◽  
pp. 2402-2421
Author(s):  
Kaushar Vaidya ◽  
Khushboo K Rao ◽  
Manan Agarwal ◽  
Souradeep Bhattacharya

ABSTRACT Blue straggler stars (BSS) are well studied in globular clusters but their systematic study with secure membership determination is lacking in open clusters. We use Gaia DR2 data to determine accurate stellar membership for four intermediate-age open clusters, namely Melotte 66, NGC 2158, NGC 2506, and NGC 6819, and three old open clusters, namely, Berkeley 39, NGC 188, and NGC 6791, to subsequently study their BSS populations. The BSS radial distributions of five clusters, namely Melotte 66, NGC 188, NGC 2158, NGC 2506, and NGC 6791, show bimodal distributions, placing them with Family II globular clusters that are of intermediate dynamical ages. The location of minima, rmin, in the bimodal BSS radial distributions, varies from 1.5rc to 4.0rc, where rc is the core radius of the clusters. We find a positive correlation between rmin and Nrelax, the ratio of cluster age to the current central relaxation time of the cluster. We further report that this correlation is consistent in its slope, within the errors, with the slope of the globular cluster correlation between the same quantities, but with a slightly higher intercept. This is the first example in open clusters that shows BSS radial distributions as efficient probes of dynamical age. The BSS radial distributions of the remaining two clusters, Berkeley 39 and NGC 6819, are flat. The estimated Nrelax values of these two clusters, however, indicate that they are dynamically evolved. Berkeley 39 especially has its entire BSS population completely segregated to the inner regions of the cluster.


2021 ◽  
Vol 503 (2) ◽  
pp. 2754-2762
Author(s):  
Nicolas Longeard ◽  
Nicolas Martin ◽  
Rodrigo A Ibata ◽  
Else Starkenburg ◽  
Pascale Jablonka ◽  
...  

ABSTRACT We present a new spectroscopic study of the faint Milky Way satellite Sagittarius II. Using multiobject spectroscopy from the Fibre Large Array Multi-Element Spectrograph, we supplement the data set of Longeard et al. with 47 newly observed stars, 19 of which are identified as members of the satellite. These additional member stars are used to put tighter constraints on the dynamics and the metallicity properties of the system. We find a low velocity dispersion of $\sigma _\mathrm{v}^\mathrm{SgrII} = 1.7 \pm 0.5$ km s−1, in agreement with the dispersion of Milky Way globular clusters of similar luminosity. We confirm the very metal-poor nature of the satellite ([Fe/H]$_\mathrm{spectro}^\mathrm{SgrII} = -2.23 \pm 0.07$) and find that the metallicity dispersion of Sgr II is not resolved, reaching only 0.20 at the 95 per cent confidence limit. No star with a metallicity below −2.5 is confidently detected. Therefore, despite the unusually large size of the system (r$_h = 35.5 ^{+1.4}_{-1.2}$ pc), we conclude that Sgr II is an old and metal-poor globular cluster of the Milky Way.


Sign in / Sign up

Export Citation Format

Share Document