scholarly journals Theory of cosmic ray modulation

2008 ◽  
Vol 4 (S257) ◽  
pp. 429-438 ◽  
Author(s):  
Stefan E. S. Ferreira

AbstractThis work aims to give a brief overview on the topic of cosmic ray modulation in the heliosphere. The heliosphere, heliospheric magnetic field, transport parameters and the transport equation together with modulation models, which solve this equation in various degree of complexity, are briefly discussed. Results from these models are then presented where first it is shown how cosmic rays are globally distributed in an asymmetrical heliosphere which results from the relative motion between the local interstellar medium and the Sun. Next the focus shifts to low-energy Jovian electrons. The intensities of these electrons, which originate from a point source in the inner heliosphere, exhibit a unique three-dimensional spiral structure where most of the particles are transported along the magnetic field lines. Time-dependent modulation is also discussed where it is shown how drift effects together with propagating diffusion barriers are responsible for modulation over a solar cycle.

2009 ◽  
Vol 5 (H15) ◽  
pp. 434-435
Author(s):  
A. Lazarian ◽  
G. Kowal ◽  
E. Vishniac ◽  
K. Kulpa-Dubel ◽  
K. Otmianowska-Mazur

AbstractA magnetic field embedded in a perfectly conducting fluid preserves its topology for all times. Although ionized astrophysical objects, like stars and galactic disks, are almost perfectly conducting, they show indications of changes in topology, magnetic reconnection, on dynamical time scales. Reconnection can be observed directly in the solar corona, but can also be inferred from the existence of large scale dynamo activity inside stellar interiors. Solar flares and gamma ray busts are usually associated with magnetic reconnection. Previous work has concentrated on showing how reconnection can be rapid in plasmas with very small collision rates. Here we present numerical evidence, based on three dimensional simulations, that reconnection in a turbulent fluid occurs at a speed comparable to the rms velocity of the turbulence, regardless of the value of the resistivity. In particular, this is true for turbulent pressures much weaker than the magnetic field pressure so that the magnetic field lines are only slightly bent by the turbulence. These results are consistent with the proposal by Lazarian & Vishniac (1999) that reconnection is controlled by the stochastic diffusion of magnetic field lines, which produces a broad outflow of plasma from the reconnection zone. This work implies that reconnection in a turbulent fluid typically takes place in approximately a single eddy turnover time, with broad implications for dynamo activity and particle acceleration throughout the universe. In contrast, the reconnection in 2D configurations in the presence of turbulence depends on resistivity, i.e. is slow.


Author(s):  
Andrew L Haynes ◽  
Clare E Parnell ◽  
Klaus Galsgaard ◽  
Eric R Priest

The heating of the solar corona is probably due to reconnection of the highly complex magnetic field that threads throughout its volume. We have run a numerical experiment of an elementary interaction between the magnetic field of two photospheric sources in an overlying field that represents a fundamental building block of the coronal heating process. The key to explaining where, how and how much energy is released during such an interaction is to calculate the resulting evolution of the magnetic skeleton. A skeleton is essentially the web of magnetic flux surfaces (called separatrix surfaces) that separate the coronal volume into topologically distinct parts. For the first time, the skeleton of the magnetic field in a three-dimensional numerical magnetohydrodynamic experiment is calculated and carefully analysed, as are the ways in which it bifurcates into different topologies. A change in topology normally changes the number of magnetic reconnection sites. In our experiment, the magnetic field evolves through a total of six distinct topologies. Initially, no magnetic flux joins the two sources. Then, a new type of bifurcation, called a global double-separator bifurcation , takes place. This bifurcation is probably one of the main ways in which new separators are created in the corona (separators are field lines at which three-dimensional reconnection takes place). This is the first of five bifurcations in which the skeleton becomes progressively more complex before simplifying. Surprisingly, for such a simple initial state, at the peak of complexity there are five separators and eight flux domains present.


2016 ◽  
Vol 82 (5) ◽  
Author(s):  
Z. Akbari ◽  
M. Hosseinpour ◽  
M. A. Mohammadi

In a three-dimensional non-null magnetic reconnection, the process of magnetic reconnection takes place in the absence of a null point where the magnetic field vanishes. By randomly injecting a population of 10 000 protons, the trajectory and energy distribution of accelerated protons are investigated in the presence of magnetic and electric fields of a particular model of non-null magnetic reconnection with the typical parameters for the solar corona. The results show that protons are accelerated along the magnetic field lines away from the non-null point only at azimuthal angles where the magnitude of the electric field is strongest and therefore particles obtain kinetic energies of the order of thousands of MeV and even higher. Moreover, the energy distribution of the population depends strongly on the amplitude of the electric and magnetic fields. Comparison shows that a non-null magnetic reconnection is more efficient in accelerating protons to very high GeV energies than a null-point reconnection.


1995 ◽  
Vol 299 ◽  
pp. 153-186 ◽  
Author(s):  
P. A. Davidson

It is well known that the imposition of a static magnetic field tends to suppress motion in an electrically conducting liquid. Here we look at the magnetic damping of liquid-mental flows where the Reynolds number is large and the magnetic Reynolds number is small. The magnetic field is taken as uniform and the fluid is either infinite in extent or else bounded by an electrically insulating surface S. Under these conditions, we find that three general principles govern the flow. First, the Lorentz force destroys kinetic energy but does not alter the net linear momentum of the fluid, nor does it change the component of angular momentum parallel to B. In certain flows, this implies that momentum, linear or angular, is conserved. Second, the Lorentz force guides the flow in such a way that the global Joule dissipation, D, decreases, and this decline in D is even more rapid than the corresponding fall in global kinetic energy, E. (Note that both D and E are quadratic in u). Third, this decline in relative dissipation, D / E, is essential to conserving momentum, and is achieved by propagating linear or angular momentum out along the magnetic field lines. In fact, this spreading of momentum along the B-lines is a diffusive process, familiar in the context of MHD turbulence. We illustrate these three principles with the aid of a number of specific examples. In increasing order of complexity we look at a spatially uniform jet evolving in time, a three-dimensional jet evolving in space, and an axisymmetric vortex evolving in both space and time. We start with a spatially uniform jet which is dissipated by the sudden application of a transverse magnetic field. This simple (perhaps even trivial) example provides a clear illustration of our three general principles. It also provides a useful stepping-stone to our second example of a steady three-dimensional jet evolving in space. Unlike the two-dimensional jets studied by previous investigators, a three-dimensional jet cannot be annihilated by magnetic braking. Rather, its cross-section deforms in such a way that the momentum flux of the jet is conserved, despite a continual decline in its energy flux. We conclude with a discussion of magnetic damping of axisymmetric vortices. As with the jet flows, the Lorentz force cannot destroy the motion, but rather rearranges the angular momentum of the flow so as to reduce the global kinetic energy. This process ceases, and the flow reaches a steady state, only when the angular momentum is uniform in the direction of the field lines. This is closely related to the tendency of magnetic fields to promote two-dimensional turbulence.


2012 ◽  
Vol 30 (4) ◽  
pp. 711-724 ◽  
Author(s):  
R. A. Treumann ◽  
W. Baumjohann

Abstract. Three-dimensional electron phase-space holes are shown to have positive charges on the plasma background, which produce a radial electric field and force the trapped electron component into an azimuthal drift. In this way electron holes generate magnetic fields in the hole. We solve the cylindrical hole model exactly for the hole charge, electric potential and magnetic field. In electron holes, the magnetic field is amplified on the flux tube of the hole; equivalently, in ion holes the field would be decreased. The flux tube adjacent to the electron hole is magnetically depleted by the external hole dipole field. This causes magnetic filamentation. It is also shown that holes are massive objects, each carrying a finite magnetic moment. Binary magnetic dipole interaction of these moments will cause alignment of the holes into chains along the magnetic field or, in the three-dimensional case, produce a magnetic fabric in the volume of hole formation. Since holes, in addition to being carriers of charges and magnetic moments, also have finite masses, they behave like quasi-particles, performing E × B, magnetic field, and diamagnetic drifts. In an inhomogeneous magnetic field, their magnetic moments experience torque, which causes nutation of the hole around the direction of the magnetic field, presumably giving rise to low frequency magnetic modulations like pulsations. A gas of many such holes may allow for a kinetic description, in which holes undergo binary dipole interactions. This resembles the polymeric behaviour. Both magnetic field generation and magnetic structure formation are of interest in auroral, solar coronal and shock physics, in particular in the problem of magnetic field filamentation in relativistic foreshocks and cosmic ray acceleration.


2013 ◽  
Vol 8 (S300) ◽  
pp. 416-417
Author(s):  
G. Allen Gary ◽  
Qiang Hu ◽  
Jong Kwan Lee

AbstractThis article comments on the results of a new, rapid, and flexible manual method to map on-disk individual coronal loops of a two-dimensional EUV image into the three-dimensional coronal loops. The method by Gary, Hu, and Lee (2013) employs cubic Bézier splines to map coronal loops using only four free parameters per loop. A set of 2D splines for coronal loops is transformed to the best 3D pseudo-magnetic field lines for a particular coronal model. The results restrict the magnetic field models derived from extrapolations of magnetograms to those admissible and inadmissible via a fitness parameter. This method uses the minimization of the misalignment angles between the magnetic field model and the best set of 3D field lines that match a set of closed coronal loops. We comment on the implication of the fitness parameter in connection with the magnetic free energy and comment on extensions of our earlier work by considering the issues of employing open coronal loops or employing partial coronal loop.


1968 ◽  
Vol 46 (10) ◽  
pp. S950-S953 ◽  
Author(s):  
J. R. Jokipii

The observed change in cosmic-ray modulation from 1963–64 to 1965 may be associated with a corresponding change in the magnetic-field power spectra between 1962 and 1965, as obtained from Mariner 2 and Mariner 4 magnetometer data, respectively. It is further suggested that the diffusion mean-free-path λ may approach a constant value approximately equal to the correlation length of the magnetic field for very-low-rigidity particles.


2014 ◽  
Vol 757 ◽  
pp. 33-56 ◽  
Author(s):  
Xuan Zhang ◽  
Oleg Zikanov

AbstractMixed convection in a horizontal duct with imposed transverse horizontal magnetic field is studied using direct numerical simulations (DNS) and linear stability analysis. The duct’s walls are electrically insulated and thermally insulated with the exception of the bottom wall, at which constant-rate heating is applied. The focus of the study is on flows at high Hartmann ($\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathit{Ha}\le 800$) and Grashof ($\mathit{Gr}\le 10^9$) numbers. It is found that, while conventional turbulence is fully suppressed, the natural convection mechanism leads to the development of large-scale coherent structures. Two types of flows are found. One is the ‘low-$\mathit{Gr}$’ regime, in which the structures are rolls aligned with the magnetic field and velocity and temperature fields are nearly uniform along the magnetic field lines outside of the boundary layers. Another is the ‘high-$\mathit{Gr}$’ regime, in which the convection appears as a combination of similar rolls oriented along the magnetic field lines and streamwise-oriented rolls. In this case, velocity and temperature distributions are anisotropic, but three-dimensional.


Sign in / Sign up

Export Citation Format

Share Document