scholarly journals Adenine synthesis at Titan atmosphere analog by soft X-rays

2009 ◽  
Vol 5 (S263) ◽  
pp. 145-146
Author(s):  
Sergio Pilling ◽  
Diana P. P. Andrade ◽  
Alvaro C. Neto ◽  
Roberto Rittner ◽  
Arnaldo N. de Brito

AbstractIn this work, we investigate the possible effects produced by soft X-rays (and secondary electrons) on Titan aerosol analogs in an attempt to simulate some prebiotic photochemistry. The experiments have been performed inside a high vacuum chamber coupled to the soft X-ray spectroscopy beamline at the Brazilian Synchrotron Light Source (LNLS). In-situ sample analysis were performed by a Fourier transform infrared spectrometer. The infrared spectra have presented several organic molecules, including nitriles and aromatic CN compounds. After the irradiation, the brownish-orange organic residue was analyzed ex-situ by gas chromatographic technique revealing the presence of adenine (C5H5N5), one of the constituents of the DNA molecule.

2014 ◽  
Vol 70 (a1) ◽  
pp. C1096-C1096
Author(s):  
Ana Cuesta ◽  
Gema Alvarez Pinazo ◽  
Angeles De la Torre ◽  
Susana Sanfélix ◽  
Inmaculada Peral ◽  
...  

XRPD is a powerful tool for material characterization in general, and for in-situ studies of chemical processes in particular. The use of an intense X-ray source, .i.e. synchrotron X-rays, coupled with fast X-ray detection permits time-resolved diffraction experiments allowing in-situ quantitative phase analysis during the early ages of cement hydration. Calcium sulfoaluminate, CSA, cements may have variable compositions, but all of them contain high amounts of ye'elimite, Ca4Al6O12SO4. Commercial CSA cements have special applications such as high strength developments at early-ages. Ye'elimite is very reactive and most of its hydration heat is released during the first eight hours of hydration . The aim of this work is to better understand the early age hydration of stoichiometric (orthorhombic) and doped (pseudo-cubic) ye'elimite samples. The parameters studied by SXRPD, LXRPD and calorimetry have been: polymorphism; water/ye'elimite ratio; and sulfate (gypsum and anhydrite) contents. This work has allowed establishing mechanisms and kinetics for hydration of ye'elimite samples by in-situ SXRPD with internal standard methodology. Moreover, pastes were also studied by ex-situ LXRPD with the external standard method, G-factor, at 2 and 7 days. Both strategies were able to quantify the amorphous contents, including free water. It is important to highlight that the results obtained at early ages, by the internal standard method, are in agreement with those obtained at later ages, G-method, showing the consistence and complementarity of both methodologies. The hydration of stoichiometric ye'elimite in the presence of gypsum is strongly hastened, when compared to the hydration process without gypsum. However, the presence of gypsum has a little effect in the hydration of doped ye'elimite. Moreover, anhydrite has also accelerated the hydration of stoichiometric ye'elimite, although its lower solubility has provoked the formation of an intermediate phase in the first hours.


2021 ◽  
Author(s):  
ITAMAR NECKEL ◽  
Lucas F. de Castro ◽  
Flavia Callefo ◽  
Verônica Teixeira ◽  
Angelo Gobbi ◽  
...  

Abstract Shedding synchrotron light on microfluidic systems, exploring several contrasts in situ operando at the nanoscale, like X-ray fluorescence, diffraction, luminescence, and absorption, has the potential to reveal new properties and functionalities of materials across diverse areas, such as green energy, photonics, and nanomedicine. In this work, we present the micro-fabrication and characterization of a multifunctional polyester/glass sealed microfluidic device well-suited to combine with analytical X-ray techniques. The device consists of smooth microchannels patterned on glass, where three gold electrodes are deposited into the channels to serve in situ electrochemistry analysis or standard electrical measurements. It has been efficiently sealed through an ultraviolet-sensitive sticker-like layer based on a polyester film, and The burst pressure determined by pumping water through the microchannel(up to 0.22 MPa). Overall, the device has demonstrated exquisite chemical resistance to organic solvents, and its efficiency in the presence of biological samples (proteins) is remarkable. The device potentialities, and its high transparency to X-rays, have been demonstrated by taking advantage of the X-ray nanoprobe Carnaúba/Sirius/LNLS, by obtaining 2D X-ray nanofluorescence maps on the microchannel filled with water and after an electrochemical nucleation reaction. To wrap up, the microfluidic device characterized here has the potential to be employed in standard laboratory experiments as well as in situ and in vivo analytical experiments using a wide electromagnetic window, from infrared to X-rays, which could serve experiments in many branches of science.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Itamar T. Neckel ◽  
Lucas F. de Castro ◽  
Flavia Callefo ◽  
Verônica C. Teixeira ◽  
Angelo L. Gobbi ◽  
...  

AbstractShedding synchrotron light on microfluidic systems, exploring several contrasts in situ/operando at the nanoscale, like X-ray fluorescence, diffraction, luminescence, and absorption, has the potential to reveal new properties and functionalities of materials across diverse areas, such as green energy, photonics, and nanomedicine. In this work, we present the micro-fabrication and characterization of a multifunctional polyester/glass sealed microfluidic device well-suited to combine with analytical X-ray techniques. The device consists of smooth microchannels patterned on glass, where three gold electrodes are deposited into the channels to serve in situ electrochemistry analysis or standard electrical measurements. It has been efficiently sealed through an ultraviolet-sensitive sticker-like layer based on a polyester film, and The burst pressure determined by pumping water through the microchannel(up to 0.22 MPa). Overall, the device has demonstrated exquisite chemical resistance to organic solvents, and its efficiency in the presence of biological samples (proteins) is remarkable. The device potentialities, and its high transparency to X-rays, have been demonstrated by taking advantage of the X-ray nanoprobe Carnaúba/Sirius/LNLS, by obtaining 2D X-ray nanofluorescence maps on the microchannel filled with water and after an electrochemical nucleation reaction. To wrap up, the microfluidic device characterized here has the potential to be employed in standard laboratory experiments as well as in in situ and in vivo analytical experiments using a wide electromagnetic window, from infrared to X-rays, which could serve experiments in many branches of science.


2016 ◽  
Vol 22 (1) ◽  
pp. 178-188 ◽  
Author(s):  
Sina Baier ◽  
Christian D. Damsgaard ◽  
Maria Scholz ◽  
Federico Benzi ◽  
Amélie Rochet ◽  
...  

AbstractA new closed cell is presented for in situ X-ray ptychography which allows studies under gas flow and at elevated temperature. In order to gain complementary information by transmission and scanning electron microscopy, the cell makes use of a Protochips E-chipTM which contains a small, thin electron transparent window and allows heating. Two gold-based systems, 50 nm gold particles and nanoporous gold as a relevant catalyst sample, were used for studying the feasibility of the cell. Measurements showing a resolution around 40 nm have been achieved under a flow of synthetic air and during heating up to temperatures of 933 K. An elevated temperature exhibited little influence on image quality and resolution. With this study, the potential of in situ hard X-ray ptychography for investigating annealing processes of real catalyst samples is demonstrated. Furthermore, the possibility to use the same sample holder for ex situ electron microscopy before and after the in situ study underlines the unique possibilities available with this combination of electron microscopy and X-ray microscopy on the same sample.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1795 ◽  
Author(s):  
Lei Zhang ◽  
Shaogang Wang

Although X-rays generated from a laboratory-based tube cannot be compared with synchrotron radiation in brilliance and monochromaticity, they are still viable and accessible in-house for ex situ or interrupted in situ X-ray tomography. This review mainly demonstrates recent works using laboratory X-ray tomography coupled with the measurements of properties or performance testing under various conditions, such as thermal, stress, or electric fields. Evolvements of correlated internal structures for some typical materials were uncovered. The damage features in a graded metallic 3D mesh and a metallic glass under mechanical loading were revealed and investigated. Micro-voids with thermal treatment and void healing phenomenon with electropulsing were clearly demonstrated and quantitatively analyzed. The substance transfer around an electrode of a Li-S battery and the protective performance of a Fe-based metallic glass coating on stainless steel were monitored through electrochemical processes. It was shown that in situ studies of the laboratory X-ray tomography were suitable for the investigation of structure change under controlled conditions and environments. An extension of the research for in situ laboratory X-ray tomography can be expected with supplementary novel techniques for internal strain, global 3D grain orientation, and a fast tomography strategy.


2009 ◽  
Vol 5 (S265) ◽  
pp. 440-441
Author(s):  
S. Pilling ◽  
D. P. P. Andrade ◽  
R. T. Marinho ◽  
E. M. do Nascimento ◽  
H. M. Boechat-Roberty ◽  
...  

AbstractWe present experimental studies on the interaction of soft X-rays on gas-phase and solid-phase amino acids and nucleobases in an attempt to verify if these molecules (supposed to be formed in molecular clouds/protostellar clouds) can survive long enough to be observed or even to be found in meteorites. Measurements have been undertaken employing 150 eV photons under high vacuum conditions at the Brazilian Synchrotron Light Laboratory (LNLS). The produced ions from the gas-phase experiments (glycine, adenine and uracil) have been mass/charge analyzed by time-of-flight spectrometer. The analysis of solid phase samples (glycine, DL-proline, DL-valine, adenine and uracil) were performed by a Fourier transform infrared spectrometer coupled to the experimental chamber. Photodissociation cross sections and halflives were determined and extrapolated to astrophysical environments. The nucleobases photostability was up to two orders of magnitude higher than for the amino acids.


2010 ◽  
Vol 1 (MEDSI-6) ◽  
Author(s):  
J. P. Sutter ◽  
S. Alcock ◽  
K. Sawhney

At the Diamond Light Source, adaptive bimorph mirrors are extensively used to focus synchrotron light. Piezo crystals embedded in each bimorph mirror expand or contract in response to applied voltages, enabling the curvature of the reflecting surface to adapt to the required form. However, high-grade metrology tools are needed to determine the optimal voltages. The Diamond Optics & Metrology group have implemented in situ (on the beamlines) and ex situ (in a metrology lab) methods of characterizing optical surfaces. For ex situ tests, a slope-measuring profiler (the Diamond-NOM (Nanometre Optical Metrology)) is employed. In situ, X-ray pencil beam scans, performed using an X-ray sensitive camera and software designed in-house, are used to correct optical slope errors. Ex situ and in situ data are shown to be in good agreement. Examples of in situ improvements in the focusing quality and deliberate defocusing are shown. The methods developed are also applicable to many other forms of adaptive optics.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove ◽  
R. T. Tung

The cobalt disilicide/silicon system has potential applications as a metal-base and as a permeable-base transistor. Although thin, low defect density, films of CoSi2 on Si(111) have been successfully grown, there are reasons to believe that Si(100)/CoSi2 may be better suited to the transmission of electrons at the silicon/silicide interface than Si(111)/CoSi2. A TEM study of the formation of CoSi2 on Si(100) is therefore being conducted. We have previously reported TEM observations on Si(111)/CoSi2 grown both in situ, in an ultra high vacuum (UHV) TEM and ex situ, in a conventional Molecular Beam Epitaxy system.The procedures used for the MBE growth have been described elsewhere. In situ experiments were performed in a JEOL 200CX electron microscope, extensively modified to give a vacuum of better than 10-9 T in the specimen region and the capacity to do in situ sample heating and deposition. Cobalt was deposited onto clean Si(100) samples by thermal evaporation from cobalt-coated Ta filaments.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove

The silicides CoSi2 and NiSi2 are both metallic with the fee flourite structure and lattice constants which are close to silicon (1.2% and 0.6% smaller at room temperature respectively) Consequently epitaxial cobalt and nickel disilicide can be grown on silicon. If these layers are formed by ultra high vacuum (UHV) deposition (also known as molecular beam epitaxy or MBE) their thickness can be controlled to within a few monolayers. Such ultrathin metal/silicon systems have many potential applications: for example electronic devices based on ballistic transport. They also provide a model system to study the properties of heterointerfaces. In this work we will discuss results obtained using in situ and ex situ transmission electron microscopy (TEM).In situ TEM is suited to the study of MBE growth for several reasons. It offers high spatial resolution and the ability to penetrate many monolayers of material. This is in contrast to the techniques which are usually employed for in situ measurements in MBE, for example low energy electron diffraction (LEED) and reflection high energy electron diffraction (RHEED), which are both sensitive to only a few monolayers at the surface.


2017 ◽  
Author(s):  
Younghee Lee ◽  
Daniela M. Piper ◽  
Andrew S. Cavanagh ◽  
Matthias J. Young ◽  
Se-Hee Lee ◽  
...  

<div>Atomic layer deposition (ALD) of LiF and lithium ion conducting (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloys was developed using trimethylaluminum, lithium hexamethyldisilazide (LiHMDS) and hydrogen fluoride derived from HF-pyridine solution. ALD of LiF was studied using in situ quartz crystal microbalance (QCM) and in situ quadrupole mass spectrometer (QMS) at reaction temperatures between 125°C and 250°C. A mass gain per cycle of 12 ng/(cm<sup>2</sup> cycle) was obtained from QCM measurements at 150°C and decreased at higher temperatures. QMS detected FSi(CH<sub>3</sub>)<sub>3</sub> as a reaction byproduct instead of HMDS at 150°C. LiF ALD showed self-limiting behavior. Ex situ measurements using X-ray reflectivity (XRR) and spectroscopic ellipsometry (SE) showed a growth rate of 0.5-0.6 Å/cycle, in good agreement with the in situ QCM measurements.</div><div>ALD of lithium ion conducting (AlF3)(LiF)x alloys was also demonstrated using in situ QCM and in situ QMS at reaction temperatures at 150°C A mass gain per sequence of 22 ng/(cm<sup>2</sup> cycle) was obtained from QCM measurements at 150°C. Ex situ measurements using XRR and SE showed a linear growth rate of 0.9 Å/sequence, in good agreement with the in situ QCM measurements. Stoichiometry between AlF<sub>3</sub> and LiF by QCM experiment was calculated to 1:2.8. XPS showed LiF film consist of lithium and fluorine. XPS also showed (AlF<sub>3</sub>)(LiF)x alloy consists of aluminum, lithium and fluorine. Carbon, oxygen, and nitrogen impurities were both below the detection limit of XPS. Grazing incidence X-ray diffraction (GIXRD) observed that LiF and (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloy film have crystalline structures. Inductively coupled plasma mass spectrometry (ICP-MS) and ionic chromatography revealed atomic ratio of Li:F=1:1.1 and Al:Li:F=1:2.7: 5.4 for (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloy film. These atomic ratios were consistent with the calculation from QCM experiments. Finally, lithium ion conductivity (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloy film was measured as σ = 7.5 × 10<sup>-6</sup> S/cm.</div>


Sign in / Sign up

Export Citation Format

Share Document