scholarly journals Inverse population synthesis using a dynamical basis

2009 ◽  
Vol 5 (S262) ◽  
pp. 388-389
Author(s):  
Juan Mateu ◽  
Gladis Magris ◽  
Gustavo Bruzual

AbstractWe introduce a new inverse population synthesis algorithm (DINBAS3D) which aims to recover the star formation and metallicity histories from galactic spectra. We investigate the use of a dynamical basis of three simple stellar population spectra that is specific for each galaxy. Our goal is to recover a robust star formation history that minimizes degeneracy effects which are very common in high resolution histories methods. In this work, we detail the method and present our findings when we apply DINBAS3D to synthetic spectra with known parameters, we compare our results with similar methods and find good agreement between them.

1999 ◽  
Vol 190 ◽  
pp. 343-344 ◽  
Author(s):  
T. A. Smecker-Hane ◽  
J. S. Gallagher ◽  
Andrew Cole ◽  
P. B. Stetson ◽  
E. Tolstoy

The Large Magellanic Cloud (LMC) is unique among galaxies in the Local Group in that it is the most massive non-spiral, is relatively gas-rich, and is actively forming stars. Determining its star-formation rate (SFR) as a function of time will be a cornerstone in our understanding of galaxy evolution. The best method of deriving a galaxy's past SFR is to compare the densities of stars in a color-magnitude diagram (CMD), a Hess diagram, with model Hess diagrams. The LMC has a complex stellar population with ages ranging from 0 to ~ 14 Gyr and metallicities from −2 ≲ [Fe/H] ≲ −0.4, and deriving its SFR and simultaneously constraining model input parameters (distance, age-metallicity relation, reddening, and stellar models) requires well-populated CMDs that span the magnitude range 15 ≤ V ≤ 24. Although existing CMDs of field stars in the LMC show tantalizing evidence for a significant burst of star formation that occurred ~ 3 Gyr ago (for examples, see Westerlund et al. 1995; Vallenari et al. 1996; Elson, et al. 1997; Gallagher et al. 1999, and references therein), estimates of the enhancement in the SFR vary from factors of 3 to 50. This uncertainty is caused by the relatively large photometric errors that plague crowded ground-based images, and the small number statistics that plague CMDs created from single Wide Field Planetary Camera 2 (WFPC2) images.


Author(s):  
F. Zhang ◽  
L. Li ◽  
Z. Han

AbstractUsing the Yunnan-II evolutionary population synthesis models comprising binary stars, we find that the inclusion of binary stars can raise the derived stellar metallicity Z* and/or age t (degeneracy problem), raise the stellar mass M*, lower the gaseous metallicity Zgas and star formation rate (SFR) of galaxies. This means that a few stars form recently in galaxies, while more stars form during the entire evolution process when considering binary stars. If the degeneracy between t and Z* can be broken, its effect on the feedback process and star formation history can be determined.


2009 ◽  
Vol 5 (S262) ◽  
pp. 353-354
Author(s):  
Enrico V. Held ◽  
Eline Tolstoy ◽  
Luca Rizzi ◽  
Mary Cesetti ◽  
Andrew A. Cole ◽  
...  

AbstractWe present the first results of a comprehensive HST study of the star-formation history of Fornax dSph, based on WFPC2 imaging of 7 Fornax fields. Our observations reach the oldest main-sequence turnoffs, allowing us to address fundamental questions of dwarf galaxy evolution, such as the spatial variations in the stellar content, and whether the old stellar population is made up of stars formed in a very early burst or the result of a more continuous star formation.


2016 ◽  
Vol 12 (S329) ◽  
pp. 287-291
Author(s):  
Francisco Najarro ◽  
Diego de la Fuente ◽  
Tom R. Geballe ◽  
Don F. Figer ◽  
D. John Hillier

AbstractWe present results from our ongoing infrared spectroscopic studies of the massive stellar content at the Center of the Milky Way. This region hosts a large number of apparently isolated massive stars as well as three of the most massive resolved young clusters in the Local Group. Our survey seeks to infer the presence of a possible top-heavy recent star formation history and to test massive star formation channels: clusters vs isolation.


2007 ◽  
Vol 3 (S245) ◽  
pp. 81-82
Author(s):  
Habib G. Khosroshahi ◽  
Louisa A. Nolan

AbstractWe study the structure and stellar populations of the luminous elliptical galaxies dominating fossil groups and compare them with the brightest galaxies in ordinary groups. Despite being over-luminous, the fossil central galaxies do not show boxy stellar isophotes which are usually associated with luminous elliptical galaxies. Boxy isophotes, according to the numerical simulations, are produced in gas poor mergers. The isophotal shapes of the fossil central galaxies, therefore, suggest a gas rich merger for fossil central galaxies. Using a two-component spectral fitting, we show that the dominant stellar population of the fossil and non-fossil galaxies is old and the second population is either old or intermediate age. However, the second stellar component (recently-formed stars) in fossil central galaxies is significantly more metal poor than that in the brightest galaxies of non-fossil groups.


2017 ◽  
Vol 13 (S334) ◽  
pp. 310-311
Author(s):  
Andreas Just ◽  
Kseniia Sysoliatina

AbstractWe used our detailed analytic local disc model to compare predictions in number counts, colour distribuitons and kinematics with a data set extracted from a combination of TGAS and RAVE catalogues. We find generally a very good agreement with some deviations close to the Galactic plane.


Author(s):  
Masao Hayashi ◽  
Yusei Koyama ◽  
Tadayuki Kodama ◽  
Yutaka Komiyama ◽  
Yen-Ting Lin ◽  
...  

Abstract We present the large-scale structure over a more than 50 comoving Mpc scale at $z \sim 0.9$ where the CL1604 supercluster, which is one of the largest structures ever known at high redshifts, is embedded. The wide-field deep imaging survey by the Subaru Strategic Program with the Hyper Suprime-Cam reveals that the already-known CL1604 supercluster is a mere part of larger-scale structure extending to both the north and the south. We confirm that there are galaxy clusters at three slightly different redshifts in the northern and southern sides of the supercluster by determining the redshifts of 55 red-sequence galaxies and 82 star-forming galaxies in total via follow-up spectroscopy with Subaru/FOCAS and Gemini-N/GMOS. This suggests that the structure known as the CL1604 supercluster is the tip of the iceberg. We investigate the stellar population of the red-sequence galaxies using 4000 Å break and Balmer H$\delta$ absorption lines. Almost all of the red-sequence galaxies brighter than $21.5\:$mag in the z band show an old stellar population of $\gtrsim\! 2\:$Gyr. The comparison of composite spectra of the red-sequence galaxies in the individual clusters show that the galaxies at a similar redshift have a similar stellar population age, even if they are located $\sim\! 50\:$Mpc apart from each other. However, there could be a large variation in the star formation history. Therefore, it is likely that galaxies associated with the large-scale structure on a 50 Mpc scale formed at almost the same time, have assembled into the denser regions, and then have evolved with different star formation history along the hierarchical growth of the cosmic web.


2012 ◽  
Vol 8 (S295) ◽  
pp. 320-320
Author(s):  
D. N. Viljoen ◽  
S. I. Loubser

AbstractWe use the full spectrum fitting ability of ULySS, with the Pegase.HR stellar population model to fit the observed spectra of 40 brightest cluster galaxies in order to determine whether a single or a composite stellar population provided the most probable representation of the star formation history (SFH). We find that some galaxies in the sample have more complex SFHs.


Sign in / Sign up

Export Citation Format

Share Document