scholarly journals 3D-MHD simulations of the evolution of magnetic fields in FR II radio sources

2010 ◽  
Vol 6 (S275) ◽  
pp. 170-171
Author(s):  
Martín Huarte-Espinosa ◽  
Martin Krause ◽  
Paul Alexander

Abstract3D-MHD numerical simulations of bipolar, hypersonic, weakly magnetized jets and synthetic synchrotron observations are presented to study the structure and evolution of magnetic fields in FR II radio sources. The magnetic field setup in the jet is initially random. The power of the jets as well as the observational viewing angle are investigated. We find that synthetic polarization maps agree with observations and show that magnetic fields inside the sources are shaped by the jets' backflow. Polarimetry statistics correlates with time, the viewing angle and the jet-to-ambient density contrast. The magnetic structure inside thin elongated sources is more uniform than for ones with fatter cocoons. Jets increase the magnetic energy in cocoons, in proportion to the jet velocity. Both, filaments in synthetic emission maps and 3D magnetic power spectra suggest that turbulence develops in evolved sources.

2020 ◽  
Vol 495 (1) ◽  
pp. 1360-1371
Author(s):  
Ankan Sur ◽  
Brynmor Haskell ◽  
Emily Kuhn

ABSTRACT We have studied numerically the evolution of magnetic fields in barotropic neutron stars, by performing non-linear magnetohydrodynamical simulations with the code pluto. For both initially predominantly poloidal and toroidal fields, with varying strengths, we find that the field settles down to a mixed poloidal–toroidal configuration, where the toroidal component contributes between ${\rm 10}$ and $20 {{\ \rm per\ cent}}$ of the total magnetic energy. This is, however, not a strict equilibrium, as the instability leads to the development of turbulence, which, in turn, gives rise to an inverse helicity cascade, which determines the final ‘twisted torus’ setup. The final field configuration is thus dictated by the non-linear saturation of the instability, and is not stationary. The average energy of the poloidal and toroidal components, however, is approximately stable in our simulations, and a complex multipolar structure emerges at the surface, while the magnetic field is dipolar at the exterior boundary, outside the star.


2021 ◽  
Vol 44 ◽  
pp. 92-95
Author(s):  
A.I. Podgorny ◽  
◽  
I.M. Podgorny ◽  
A.V. Borisenko ◽  
N.S. Meshalkina ◽  
...  

Primordial release of solar flare energy high in corona (at altitudes 1/40 - 1/20 of the solar radius) is explained by release of the magnetic energy of the current sheet. The observed manifestations of the flare are explained by the electrodynamical model of a solar flare proposed by I. M. Podgorny. To study the flare mechanism is necessary to perform MHD simulations above a real active region (AR). MHD simulation in the solar corona in the real scale of time can only be carried out thanks to parallel calculations using CUDA technology. Methods have been developed for stabilizing numerical instabilities that arise near the boundary of the computational domain. Methods are applicable for low viscosities in the main part of the domain, for which the flare energy is effectively accumulated near the singularities of the magnetic field. Singular lines of the magnetic field, near which the field can have a rather complex configuration, coincide or are located near the observed positions of the flare.


1990 ◽  
Vol 140 ◽  
pp. 54-54
Author(s):  
R.R. Andreassian ◽  
A.N. Makarov

The present paper is devoted to a study of the magnetic field configuration of our Galaxy based on Faraday rotation measures (RM) of 185 pulsars and 802 extragalactic radio sources. RM data of pulsars located near the plane of the Galaxy are used for the study of magnetic fields in neighbouring spiral arms. For the distribution of spiral arms the well-known model of Georgelin and Georgelin (1976) is used. The calculations show (for details see Andreassian and Makarov, 1987, 1989) that in the Perseus spiral arm and the local Orion arm the magnetic fields have approximately the same directions (lo;bo) ≈ (80°;0°), while in the Sagittarius-Carina arm the magnetic field has an opposite direction.


Several recent investigations in geophysics and astrophysics have involved a consideration of the hydrodynamics of a fluid which is a good electrical conductor. In this paper one of the problems which seem likely to arise in such investigations is discussed. The fluid is assumed to be incompressible and in homogeneous turbulent motion, and externally imposed electric and magnetic fields are assumed to be absent. The equations governing the interaction of the electromagnetic field and the turbulent motion are set up with the same assumptions as are used to obtain the Maxwell and current flow equations for a metallic conductor. It is shown that the equation for the magnetic field is identical in form with that for the vorticity in a non-conducting fluid; immediate deductions are that lines of magnetic force move with the fluid when the conductivity is infinite, and that the small-scale components of the turbulence have the more powerful effect on the magnetic field. The first question considered is the stability of a purely hydrodynamical system to small disturbing magnetic fields, and it is shown that the magnetic energy of the disturbance will increase provided the conductivity is greater than a critical value determined by the viscosity of the fluid. The rate of growth of magnetic energy is approximately exponential, with a doubling time which can be simply related to the properties of the turbulence. General mechanical considerations suggest that a steady state is reached when the magnetic field has as much energy as is contained in the small-scale components of the turbulence. Estimates of this amount of energy and of the region of the spectrum in which it will lie are given in terms of observable properties of the turbulence.


2008 ◽  
Vol 4 (S259) ◽  
pp. 87-88 ◽  
Author(s):  
Andrew Fletcher ◽  
M. Korpi ◽  
A. Shukurov

AbstractObservations show that magnetic fields in the interstellar medium (ISM) often do not respond to increases in gas density as would be naively expected for a frozen-in field. This may suggest that the magnetic field in the diffuse gas becomes detached from dense clouds as they form. We have investigated this possibility using theoretical estimates, a simple magneto-hydrodynamic model of a flow without mass conservation and numerical simulations of a thermally unstable flow. Our results show that significant magnetic flux can be shed from dense clouds as they form in the diffuse ISM, leaving behind a magnetically dominated diffuse gas.


2020 ◽  
Vol 640 ◽  
pp. A4 ◽  
Author(s):  
T. Felipe ◽  
C. R. Sangeetha

Context. In stratified atmospheres, acoustic waves can only propagate if their frequency is higher than the cutoff value. The determination of the cutoff frequency is fundamental for several topics in solar physics, such as evaluating the contribution of the acoustic waves to the chromospheric heating or the application of seismic techniques. However, different theories provide different cutoff values. Aims. We developed an alternative method to derive the cutoff frequency in several standard solar models, including various quiet-Sun and umbral atmospheres. The effects of magnetic field and radiative losses on the cutoff are examined. Methods. We performed numerical simulations of wave propagation in the solar atmosphere using the code MANCHA. The cutoff frequency is determined from the inspection of phase-difference spectra computed between the velocity signal at two atmospheric heights. The process is performed by choosing pairs of heights across all the layers between the photosphere and the chromosphere to derive the vertical stratification of the cutoff in the solar models. Result. The cutoff frequency predicted by the theoretical calculations departs significantly from the measurements obtained from the numerical simulations. In quiet-Sun atmospheres, the cutoff shows a strong dependence on the magnetic field for adiabatic wave propagation. When radiative losses are taken into account, the cutoff frequency is greatly reduced and the variation of the cutoff with the strength of the magnetic field is lower. The effect of the radiative losses in the cutoff is necessary to understand recent quiet-Sun and sunspot observations. In the presence of inclined magnetic fields, our numerical calculations confirm that the cutoff frequency is reduced as a result of the reduced gravity experienced by waves that propagate along field lines. An additional reduction is also found in regions with significant changes in the temperature, which is due to the lower temperature gradient along the path of field-guided waves. Conclusions. Our results show solid evidence that the cutoff frequency in the solar atmosphere is stratified. The cutoff values are not correctly captured by theoretical estimates. In addition, most of the widely used analytical cutoff formulae neglect the effect of magnetic fields and radiative losses, whose role is critical for determining the evanescent or propagating nature of the waves.


2012 ◽  
Vol 8 (S291) ◽  
pp. 223-228
Author(s):  
JinLin Han

AbstractIn this invited talk, I first discuss the advantages and disadvantages of many probes for the magnetic fields of the Milky Way. I conclude that pulsars are the best probes for the magnetic structure in our Galaxy, because magnetic field strength and directions can be derived from their dispersion measures (DMs) and rotation measures (RMs). Using the pulsars as probes, magnetic field structures in the Galactic disk, especially the field reversals between the arms and interarm regions, can be well revealed from the distribution of RM data. The field strengths on large scales and small scales can be derived from RM and DM data. RMs of extragalactic radio sources can be used as the indication of magnetic field directions in the spiral tangential regions, and can be used as probes for the magnetic fields in the regions farther away than pulsars when their median RMs are compared with pulsar RMs.


2011 ◽  
Vol 133 (8) ◽  
Author(s):  
Jacques C. Richard ◽  
Benjamin M. Riley ◽  
Sharath S. Girimaji

We perform direct numerical simulations of decaying magnetohydrodynamic turbulence subject to initially uniform or random magnetic fields. We investigate the following features: (i) kinetic–magnetic energy exchange and velocity field anisotropy, (ii) action of Lorentz force, (iii) enstrophy and helicity behavior, and (iv) internal structure of the small scales. While tendency toward kinetic–magnetic energy equi-partition is observed in both uniform and random magnetic field simulations, the manner of approach to that state is very different in the two cases. Overall, the role of the Lorentz force is merely to bring about the equi-partition. No significant variance anisotropy of velocity fluctuations is observed in any of the simulations. The mechanism of enstrophy generation changes with the strength of the magnetic field, and helicity shows no significant growth in any of the cases. The small-scale structure (orientation between vorticity and strain-rate eigenvectors) does not appear to be influenced by the magnetic field.


2018 ◽  
Vol 14 (A30) ◽  
pp. 299-302
Author(s):  
Annalisa Bonafede ◽  
Chiara Stuardi ◽  
Federica Savini ◽  
Franco Vazza ◽  
Marcus Brüggen

AbstractMagnetic fields originate small-scale instabilities in the plasma of the intra-cluster medium, and may have a key role to understand particle acceleration mechanisms. Recent observations at low radio frequencies have revealed that synchrotron emission from galaxy clusters is more various and complicated than previously thought, and new types of radio sources have been observed. In the last decade, big steps forward have been done to constrain the magnetic field properties in clusters thanks to a combined approach of polarisation observations and numerical simulations that aim to reproduce Faraday Rotation measures of sources observed through the intra-cluster medium. In this contribution, I will review the results on magnetic fields reached in the last years, and I will discuss the assumptions that have been done so far in light of new results obtained from cosmological simulations. I will also discuss how the next generation of radio instruments, as the SKA, will help improving our knowledge of the magnetic field in the intra-cluster medium.


Author(s):  
Sandhya Jagannathan ◽  
Ramkishor Sharma ◽  
T. R. Seshadri

Astrophysical magnetic fields decay primarily via two processes, namely ambipolar diffusion and turbulence. Constraints on the strength and the spectral index of nonhelical magnetic fields have been derived earlier in the literature through the effect of the above-mentioned processes on the cosmic microwave background (CMB) radiation. A helical component of the magnetic field is also produced in various models of magnetogenesis, which can explain larger coherence length magnetic field. In this study, we focus on studying the effects of post-recombination decay of maximally helical magnetic fields through ambipolar diffusion and decaying magnetic turbulence and the impact of this decay on CMB. We find that helical magnetic fields lead to changes in the evolution of baryon temperature and ionization fraction which in turn lead to modifications in the CMB temperature and polarization anisotropy. These modifications are different from those arising due to nonhelical magnetic fields with the changes dependent on the strength and the spectral index of the magnetic field power spectra.


Sign in / Sign up

Export Citation Format

Share Document