scholarly journals Intermittent activity of radio sources. Accretion instabilities and jet precession.

2010 ◽  
Vol 6 (S275) ◽  
pp. 180-181 ◽  
Author(s):  
M. Kunert-Bajraszewska ◽  
A. Janiuk ◽  
A. Siemiginowska ◽  
M. Gawroński

AbstractWe consider the radiation pressure instability operating on short timescales (103 - 106 years) in the accretion disk around a supermassive black hole as the origin of the intermittent activity of radio sources. We test whether this instability can be responsible for short ages (<104 years) of Compact Steep Spectrum sources measured by hot spots propagation velocities in VLBI observations and statistical overabundance of Gigahertz Peaked Spectrum sources. The implied timescales are consistent with the observed ages of the sources. We aslo discuss possible implications of the intermittent activity on the complex morphology of radio sources, such as the quasar 1045+352, dominated by a knotty jet showing several bends. It is possible that we are whitnessing an ongoing jet precession in this source due to internal instabilities within the jet flow.

2010 ◽  
Vol 6 (S275) ◽  
pp. 94-95
Author(s):  
Agnieszka Janiuk ◽  
Bożena Czerny ◽  
Monika Mościbrodzka ◽  
Aneta Siemiginowska

AbstractWe present various instability mechanisms in the accreting black hole systems which might indicate at the connection between the accretion disk and jet. The jets observed in microquasars can have a peristent or blobby morphology. Correlated with the accretion luminosity, this might provide a link to the cyclic outbursts of the disk. Such duty-cycle type of behaviour on short timescales results from the thermal instability caused by the radiation pressure domination. The same type of instability may explain the cyclic radioactivity of the supermassive black hole systems. The somewhat longer timescales are characteristic for the instability caused by the partial hydrogen ionization. The distortions of the jet direction and complex morphology of the sources can be caused by precession of the disk-jet axis.


Nature ◽  
10.1038/34130 ◽  
1998 ◽  
Vol 391 (6662) ◽  
pp. 54-56 ◽  
Author(s):  
B. C. Bromley ◽  
W. A. Miller ◽  
V. I. Pariev

2017 ◽  
Vol 13 (S336) ◽  
pp. 139-140
Author(s):  
F. Kamali ◽  
C. Henkel ◽  
A. Brunthaler ◽  
C. M. V. Impellizzeri ◽  
K. M. Menten ◽  
...  

AbstractIn our attempt to investigate the basic active galactic nucleus (AGN) paradigm requiring a centrally located supermassive black hole (SMBH), a close to Keplerian accretion disk and a jet perpendicular to its plane, we have searched for radio continuum in galaxies with H2O megamasers in their disks. We observed 18 such galaxies with the Very Large Baseline Array in C band (5 GHz, ~2 mas resolution) and we detected 5 galaxies at 8 σ or higher levels. For those sources for which the maser data is available, the positions of masers and those of the 5 GHz radio continuum sources coincide within the uncertainties, and the radio continuum is perpendicular to the maser disk’s orientation within the position angle uncertainties.


1998 ◽  
Vol 184 ◽  
pp. 75-76 ◽  
Author(s):  
A. Yonehara ◽  
S. Mineshige ◽  
J. Fukue ◽  
M. Umemura ◽  
E.L. Turner

Generally, it is believed that there is a supermassive black hole and a surrounding accretion disk in a central region of active galactic nuclei (AGN). However, it is quite difficult to obtain direct information about the center of AGN, because the accretion disk size is far too small to resolve.


2020 ◽  
Vol 35 (02n03) ◽  
pp. 2040054
Author(s):  
M. Yu. Piotrovich ◽  
V. L. Afanasiev ◽  
S. D. Buliga ◽  
T. M. Natsvlishvili

Based on spectropolarimetry for a number of active galactic nuclei in Seyfert 1 type galaxies observed with the 6-m BTA telescope, we have estimated the spins of the supermassive black holes at the centers of these galaxies. We have determined the spins based on the standard Shakura-Sunyaev accretion disk model. More than 70% of the investigated active galactic nuclei are shown to have Kerr supermassive black holes with a dimensionless spin greater than 0.9.


Universe ◽  
2019 ◽  
Vol 5 (8) ◽  
pp. 183 ◽  
Author(s):  
Vyacheslav I. Dokuchaev ◽  
Natalia O. Nazarova

We propose the simple new method for extracting the value of the black hole spin from the direct high-resolution image of black hole by using a thin accretion disk model. In this model, the observed dark region on the first image of the supermassive black hole in the galaxy M87, obtained by the Event Horizon Telescope, is a silhouette of the black hole event horizon. The outline of this silhouette is the equator of the event horizon sphere. The dark silhouette of the black hole event horizon is placed within the expected position of the black hole shadow, which is not revealed on the first image. We calculated numerically the relation between the observed position of the black hole silhouette and the brightest point in the thin accretion disk, depending on the black hole spin. From this relation, we derive the spin of the supermassive black hole M87*, a = 0.75 ± 0.15 .


Nature ◽  
1979 ◽  
Vol 277 (5698) ◽  
pp. 610-615 ◽  
Author(s):  
V. K. Kapahi ◽  
R. T. Schilizzi

2020 ◽  
Vol 500 (4) ◽  
pp. 4866-4877
Author(s):  
A S Andrianov ◽  
A M Baryshev ◽  
H Falcke ◽  
I A Girin ◽  
T de Graauw ◽  
...  

ABSTRACT High-resolution imaging of supermassive black hole shadows is a direct way to verify the theory of general relativity under extreme gravity conditions. Very Long Baseline Interferometry (VLBI) observations at millimetre/submillimetre wavelengths can provide such angular resolution for the supermassive black holes located in Sgr A* and M87. Recent VLBI observations of M87 with the Event Horizon Telescope (EHT) have shown such capabilities. The maximum obtainable spatial resolution of the EHT is limited by the Earth's diameter and atmospheric phase variations. In order to improve the image resolution, longer baselines are required. The Radioastron space mission successfully demonstrated the capabilities of space–Earth VLBI with baselines much longer than the Earth's diameter. Millimetron is the next space mission of the Russian Space Agency and will operate at millimetre wavelengths. The nominal orbit of the observatory will be located around the Lagrangian L2 point of the Sun–Earth system. In order to optimize the VLBI mode, we consider a possible second stage of the mission that could use a near-Earth high elliptical orbit (HEO). In this paper, a set of near-Earth orbits is used for synthetic space–Earth VLBI observations of Sgr A* and M87 in a joint Millimetron and EHT configuration. General relativistic magnetohydrodynamic models for the supermassive black hole environments of Sgr A* and M87 are used for static and dynamic imaging simulations at 230 GHz. A comparison preformed between ground and space–Earth baselines demonstrates that joint observations with Millimetron and EHT significantly improve the image resolution and allow the EHT + Millimetron to obtain snapshot images of Sgr A*, probing the dynamics at fast time-scales.


2014 ◽  
Vol 28 ◽  
pp. 1460183
Author(s):  
GUSTAVO E. ROMERO ◽  
DANIELA PÉREZ ◽  
GABRIELA S. VILA

An accretion disk around a supermassive black hole may be strongly perturbed by the presence of a secondary black hole. Recent simulations have shown that, under certain conditions, the tidal torques exerted by the secondary black hole may open an annular gap in the disk. In this regime, matter "overflows" across the secondary's orbit to accrete onto the primary and may feed a pair of relativistic jets. In this work we study the radiative properties of a binary system of supermassive black holes, assuming that a relativistic jet is launched from the primary and the migration of the secondary across the disk proceeds in the "overflowing" regime. The modified radiative spectrum of the disk is calculated accounting for strong gravitational effects in the innermost region. The jet emits non-thermal radiation all along the electromagnetic spectrum by interaction of locally accelerated electrons with the jet's magnetic field and internal and external radiation. In particular, we investigate whether the interaction of the relativistic electrons with the photons emitted by the accretion disk induces any signature in the spectral energy distribution of the jet that may reveal the presence of the secondary black hole.


Sign in / Sign up

Export Citation Format

Share Document