scholarly journals The Apsidal Motion of the Eclipsing Binary Systems GSC 4487 0347 and GSC 4513 2537

2011 ◽  
Vol 7 (S282) ◽  
pp. 93-94
Author(s):  
V. S. Kozyreva ◽  
A. V. Kusakin ◽  
T. Krajci ◽  
J. Menke ◽  
T. M. Tsvetkova

AbstractThe eclipsing variable stars GSC 44870347 and GSC 4513 2537 are recently discovered binary systems (Otero et al., 2006) with orbital periods 1d.99 and 6d.33 days. We carried out the photometric observations of these eclipsing binaries from 2009-2010 using a CCD-array at the Tien-Shan Observatory in Kazakstan, at the Crimea Station of the Sternberg Astronomical Institute, at the Astrokolkhoz Observatory in New Mexico (AAVSO), while the spectrophotometric observations were obtained at the Starlight Farm Observatory in Barnesville, USA.

2019 ◽  
Vol 491 (1) ◽  
pp. 690-707 ◽  
Author(s):  
Adam S Jermyn ◽  
Jamie Tayar ◽  
Jim Fuller

ABSTRACT Over time, tides synchronize the rotation periods of stars in a binary system to the orbital period. However, if the star exhibits differential rotation, then only a portion of it can rotate at the orbital period, so the rotation period at the surface may not match the orbital period. The difference between the rotation and orbital periods can therefore be used to infer the extent of the differential rotation. We use a simple parametrization of differential rotation in stars with convective envelopes in circular orbits to predict the difference between the surface rotation period and the orbital period. Comparing this parametrization to observed eclipsing binary systems, we find that in the surface convection zones of stars in short-period binaries there is very little radial differential rotation, with |r∂rln Ω| < 0.02. This holds even for longer orbital periods, though it is harder to say which systems are synchronized at long periods, and larger differential rotation is degenerate with asynchronous rotation.


2017 ◽  
Vol 12 (S330) ◽  
pp. 354-355
Author(s):  
Irina Voloshina ◽  
Valerian Sementsov

AbstractThe extended observational program for study of cataclysmic variables is realized in Sternberg Astronomical Institute during the last years. A few telescopes of Crimean Observational Station equipped with a different devices, — UBV photometer and two CCD camera, are used for observations. Among the close binary systems (CBS), cataclysmic variables are the most interesting objects because of the outburst activity and variety of their observational features. They could serve a good laboratory for study of physical processes in CBS. GAIA provides astronomers with a new ample opportunity for investigation of cataclysmic variables. Though the relative faintness of detected objects it is still possible to carry out a high accuracy ground-based observations with our equipment. Obtained ground-based data permit us to confirm classification of detected CV-candidates, to determine the physical characteristics with a sample of new cods and improve the current understanding of their nature.


2005 ◽  
Vol 13 ◽  
pp. 446-446
Author(s):  
Edward F. Guinan

Photographic surveys of the Magellanic Clouds and the M31 carried decades ago discovered ~200 close binaries. In most cases the photographic light curves are good enough only to identify the stars as close (mostly eclipsing) binaries and to estimate orbital periods and binary type. Except for a few cases, little useful information may be obtained from these stars except to be reassured that eclipsing binary (EB) systems are present in other galaxies. However a major advance occurred with the advent of high quantum efficient CCDs. Because of this an explosion in the number of known extragalactic binaries occurred during the 1990s as offshoots of photometric microlensing surveys such as EROS, MACHO, and OGLE. Now over 10 000 extragalactic EBs have been identified. Also, photometric surveys of M31 and M33 (e.g. DIRECT) are discovering many more 19-20th mag eclipsing/close binaries. Over the next decade it is expected that ~1 million new binary systems will be identified in these galaxies. In this overview I will discuss recent advances and future expectations in the studies of extragalactic binaries


2005 ◽  
Vol 13 ◽  
pp. 460-460
Author(s):  
Douglas Welch

Microlensing surveys of the Large and Small Magellanic Clouds have revealed the existence of Type I and II Cepheid variable stars in eclipsing binary systems. In this review I will summarize the state of the known published and unpublished observations of these systems describe what has been learned to date and discuss what the prospects are for extracting additional information from the known systems using future observations. This review will also discuss the known state of searches for RR Lyrae stars in both spectroscopic and eclipsing binaries and suggest strategies for future success in detecting such systems.


1998 ◽  
Vol 11 (1) ◽  
pp. 16-27
Author(s):  
Brian Warner

The evolution of single stars on and away from the main sequence is well understood. A degenerate core is formed in a star as the star leaves the main sequence and expands to a giant with a radius typically 50 - 500 Ro . Observationally it is known that most stars are members of binary systems, and among these many have orbital periods less than 100 y. It can happen, therefore, that the expanding envelope of the primary of a binary system can reach to the secondary. As this happens, the primary fills its Roche tidal lobe and transfers matter to the secondary; if the primary has a radiative envelope the rate at which this occurs exceeds the Eddington limit of the secondary, which therefore repels the incoming gas, forming a common envelope around the two stars. Friction within the envelope causes the stars to spiral towards each other until the energy and angular momentum extracted from the binary orbit and transferred to the envelope are sufficient to eject the common envelope as a planetary nebula, leaving a short period binary comprising a white dwarf and a main sequence star. This mechanism of producing short period binaries containing white dwarfs, proposed by Ostriker and by Paczynski (1976), is the probable origin of the class of objects known as Cataclysmic Variable Stars (CVs), which encompass the classical novae, dwarf novae, novalike variables and a variety of related objects. Evidence has been accumulating for forty years (Crawford & Kraft 1956, Warner 1995a) that every CV consists of a secondary star (usually a dwarf, but a few systems contain giants) filling its Roche lobe and transferring mass to a white dwarf primary. In systems of normal chemical composition the orbital periods lie between 75 mins and ~250 d, with the majority having . A few hydrogen-free systems are known for which 17 mins < Porb < 50 mins. It should be noted that CVs are very compact binary systems: for h such a binary would fit inside the Sun.


2011 ◽  
Vol 7 (S281) ◽  
pp. 201-202
Author(s):  
Irina Voloshina ◽  
Vladimir Metlov

AbstractThe recurrent nova RS Oph is a long period (~455 days) binary system consisting of a hot white dwarf with mass close to the Chandrasekhar limit and an M-type giant secondary. Here we present the results of photometric observations of this nova which were made during recent years with the telescopes of the Sternberg Astronomical Institute in Crimea.


2020 ◽  
Vol 493 (3) ◽  
pp. 4186-4208 ◽  
Author(s):  
T Jayasinghe ◽  
K Z Stanek ◽  
C S Kochanek ◽  
P J Vallely ◽  
B J Shappee ◽  
...  

ABSTRACT We characterize an all-sky catalogue of ∼8400 δ Scuti variables in ASAS-SN, which includes ∼3300 new discoveries. Using distances from Gaia DR2, we derive period–luminosity relationships for both the fundamental mode and overtone pulsators in the WJK, V, Gaia DR2 G, J, H, Ks, and W1 bands. We find that the overtone pulsators have a dominant overtone mode, with many sources pulsating in the second overtone or higher order modes. The fundamental mode pulsators have metallicity-dependent periods, with log10(P) ∼ −1.1 for $\rm [Fe/H]\lt -0.3$ and log10(P) ∼ −0.9 for $\rm [Fe/H]\gt 0$, which leads to a period-dependent scale height. Stars with $P\gt 0.100\, \rm d$ are predominantly located close to the Galactic disc ($\rm |\mathit{ Z}|\lt 0.5\, kpc$). The median period at a scale height of $Z\sim 0\, \rm kpc$ also increases with the Galactocentric radius R, from log10(P) ∼ −0.94 for sources with $R\gt 9\, \rm kpc$ to log10(P) ∼ −0.85 for sources with $R\lt 7\, \rm kpc$, which is indicative of a radial metallicity gradient. To illustrate potential applications of this all-sky catalogue, we obtained 30 min cadence, image subtraction TESS light curves for a sample of 10 fundamental mode and 10 overtone δ Scuti stars discovered by ASAS-SN. From this sample, we identified two new δ Scuti eclipsing binaries, ASASSN-V J071855.62−434247.3 and ASASSN-V J170344.20−615941.2 with short orbital periods of Porb = 2.6096 and 2.5347 d, respectively.


2020 ◽  
Vol 498 (2) ◽  
pp. 2833-2844
Author(s):  
A Carmo ◽  
C E Ferreira Lopes ◽  
A Papageorgiou ◽  
F J Jablonski ◽  
C V Rodrigues ◽  
...  

ABSTRACT The discovery and characterization of Algol eclipsing binaries (EAs) provide an opportunity to contribute for a better picture of the structure and evolution of low-mass stars. However, the cadence of most current photometric surveys hinders the detection of EAs since the separation between observations is usually larger than the eclipse(s) duration and hence few measurements are found at the eclipses. Even when those objects are detected as variable, their periods can be missed if an appropriate oversampling factor is not used in the search tools. In this paper, we apply this approach to find the periods of stars catalogued in the Catalina Real-Time Transient Survey (CRTS) as EAs having unknown period (EAup). As a result, the periods of ${\sim} 56{\rm {per \, cent}}$ of them were determined. Eight objects were identified as low-mass binary systems and modelled with the Wilson & Devinney synthesis code combined with a Markov chain Monte Carlo optimization procedure. The computed masses and radii are in agreement with theoretical models and show no evidence of inflated radii. This paper is the first of a series aiming to identify suspected binary systems in large surveys.


2017 ◽  
Vol 26 (1) ◽  
Author(s):  
Veronika Schaffenroth ◽  
Brad Barlow ◽  
Stephan Geier ◽  
Maja Vučković ◽  
Dave Kilkenny ◽  
...  

AbstractPlanets and brown dwarfs in close orbits will interact with their host stars, as soon as the stars evolve to become red giants. However, the outcome of those interactions is still unclear. Recently, several brown dwarfs have been discovered orbiting hot subdwarf stars at very short orbital periods of 0.065 - 0.096 d. More than 8% of the close hot subdwarf binaries might have sub-stellar companions. This shows that such companions can significantly affect late stellar evolution and that sdB binaries are ideal objects to study this influence. Thirty-eight new eclipsing sdB binary systems with cool low-mass companions and periods from 0.05 to 0.5 d were discovered based on their light curves by the OGLE project. In the recently published catalog of eclipsing binaries in the Galactic bulge, we discovered 75 more systems. We want to use this unique and homogeneously selected sample to derive the mass distribution of the companions, constrain the fraction of sub-stellar companions and determine the minimum mass needed to strip off the red-giant envelope. We are especially interested in testing models that predict hot Jupiter planets as possible companions. Therefore, we started the EREBOS (Eclipsing Reflection Effect Binaries from the OGLE Survey) project, which aims at analyzing those new HW Vir systems based on a spectroscopic and photometric follow up. For this we were granted an ESO Large Program for ESO-VLT/FORS2. Here we give an update on the the current status of the project and present some preliminary results.


2016 ◽  
pp. 27-32 ◽  
Author(s):  
D. Kjurkchieva ◽  
V.A. Popov ◽  
D. Vasileva ◽  
N. Petrov

We present follow-up photometric observations in Sloan filters g', i' of the newly discovered eclipsing stars USNO-B1.0 1395-0370184 and USNO-B1.0 1395-0370731. Our data revealed that their orbital periods are considerably bigger than the previous values. This result changed the classification of USNO-B1.0 1395-0370184 from ultrashort-period binary (P=0.197 d) to short-period system (P=0.251 d). The light curve solutions of our observations revealed that USNOB1.0 1395-0370184 and USNO-B1.0 1395-0370731 are overcontact binaries in which components are K dwarfs, close in masses and radii. The light curve distortions were reproduced by cool spots with angular radius of around 20?.


Sign in / Sign up

Export Citation Format

Share Document