scholarly journals Kinematic Properties of Chromospheric Active Binary Stars

2011 ◽  
Vol 7 (S282) ◽  
pp. 458-459
Author(s):  
M. Tüysüz ◽  
F. Soydugan ◽  
S. Bilir ◽  
O. Demircan

AbstractThe kinematic behaviour of 362 chromospherically active binary stars (CABs) in the solar neighbourhood were investigated. The Third CABs Catalog by Eker et al. (2008) was used as the main source. The spatial distribution and the components of the Galactic space velocities of the programme stars were determined. The effects of differential rotation and Local Standard of Rest (LSR) were corrected for all systems.Forty probable moving group (MG) members were determined by Eggen's criteria. The kinematic age of the young systems, which are probable members of MGs, was calculated as 0.79 (0.21) Gyr and the rest of 322 field stars were found to have a kinematic age of 4.38 (1.1) Gyr. Field CABs were separated into two sub-groups: dwarf systems, which were formed by main sequence (dwarf) stars, and evolved systems included at least one evolved (giant or sub-giant) component. The kinematic age of 134 dwarf systems was calculated as 4.69 (0.75) Gyr and 4.15 (1.29) Gyr for 188 evolved CABs.

Author(s):  
Roy Gomel ◽  
Simchon Faigler ◽  
Tsevi Mazeh ◽  
Michał Pawlak

Abstract This is the third of a series of papers that presents an algorithm to search for close binaries with massive, possibly compact, unseen secondaries. The detection of such a binary is based on identifying a star that displays a large ellipsoidal periodic modulation, induced by tidal interaction with its companion. In the second paper of the series we presented a simple approach to derive a robust modified minimum mass ratio (mMMR), based on the observed ellipsoidal amplitude, without knowing the primary mass and radius, assuming the primary fills its Roche lobe. The newly defined mMMR is always smaller than the actual mass ratio. Therefore, a binary with an mMMR larger than unity is a good candidate for having a massive secondary, which might be a black hole or a neutron star. This paper considers 10,956 OGLE short-period ellipsoidals observed towards the Galactic Bulge. We re-analyse their modulation and identify 136 main-sequence systems with mMMR significantly larger than unity as candidates for having compact-object secondaries, assuming their observed periodic modulations reflect indeed the ellipsoidal effect. Obviously, one needs follow-up observations to find out the true nature of these companions.


2015 ◽  
Vol 9 (4) ◽  
pp. 1715-1720 ◽  
Author(s):  
M. Fritz ◽  
B. N. Deshpande ◽  
F. Bouchard ◽  
E. Högström ◽  
J. Malenfant-Lepage ◽  
...  

Abstract. Accelerating climate change and increased economic and environmental interests in permafrost-affected regions have resulted in an acute need for more directed permafrost research. In June 2014, 88 early career researchers convened to identify future priorities for permafrost research. This multidisciplinary forum concluded that five research topics deserve greatest attention: permafrost landscape dynamics, permafrost thermal modeling, integration of traditional knowledge, spatial distribution of ground ice, and engineering issues. These topics underline the need for integrated research across a spectrum of permafrost-related domains and constitute a contribution to the Third International Conference on Arctic Research Planning (ICARP III).


1990 ◽  
Vol 139 ◽  
pp. 193-198
Author(s):  
Guido Münch ◽  
Eckhart Pitz

The measurement of Hα emission on two high galactic latitude clouds known to emit 21 cm lines with local standard of rest (LSR) velocities of −50 and −85 km s−1 is reported. The Hα lines have been found nearly at the velocities of the 21 CM features and have emission rates of 0.2 Rayleigh. The diffuse Lyman continuum intensity required to produce HI ionization at the measured rate is in agreement with the direct measurements made with the ultraviolet (UV) spectrometer of the Voyager 2 spacecraft.


1992 ◽  
Vol 9 ◽  
pp. 643-645
Author(s):  
G. Fontaine ◽  
F. Wesemael

AbstractIt is generally believed that the immediate progenitors of most white dwarfs are nuclei of planetary nebulae, themselves the products of intermediate- and low-mass main sequence evolution. Stars that begin their lifes with masses less than about 7-8 M⊙ (i.e., the vast majority of them) are expected to become white dwarfs. Among those which have already had the time to become white dwarfs since the formation of the Galaxy, a majority have burnt hydrogen and helium in their interiors. Consequently, most of the mass of a typical white dwarf is contained in a core made of the products of helium burning, mostly carbon and oxygen. The exact proportions of C and 0 are unknown because of uncertainties in the nuclear rates of helium burning.


1994 ◽  
Vol 146 ◽  
pp. 61-70
Author(s):  
James Liebert

The term dwarf stars identifies objects of small radius in the Hertzsprung-Russell (H-R) Diagram, but encompasses more than one phase of stellar evolution. The M dwarfs (type dM) populate the main sequence at the low mass end; these are the coolest core hydrogen-burning stars. They belong generally to the Galactic disk, or Population I, have relatively small space motions with respect to the Sun, and have similar metallicities to the Sun (although perhaps only within a factor of several). In particular, this means that the abundance of oxygen is always greater than that of carbon. The M subdwarfs (sdM) are the Population II counterparts, showing low metallicities and high space motions. Because they have smaller radii, they define a main sequence at lower luminosity than the M dwarfs for a given temperature. Hence the term subdwarf.


2019 ◽  
Vol 625 ◽  
pp. A12 ◽  
Author(s):  
Mareike Godolt ◽  
Nicola Tosi ◽  
Barbara Stracke ◽  
John Lee Grenfell ◽  
Thomas Ruedas ◽  
...  

Context. The habitability of a planet depends on various factors, such as the delivery of water during its formation, the co-evolution of the interior and the atmosphere, and the stellar irradiation which changes in time. Aims. Since an unknown number of rocky extrasolar planets may operate in a one-plate convective regime, i.e. without plate tectonics, our aim is to understand the conditions under which planets in such a stagnant-lid regime may support habitable surface conditions. Understanding the interaction of the planetary interior and outgassing of volatiles in combination with the evolution of the host star is crucial to determining the potential habitability. M-dwarf stars in particular possess a high-luminosity pre-main sequence phase that endangers the habitability of planets around them via water loss. We therefore explore the potential of secondary outgassing from the planetary interior to rebuild a water reservoir allowing for habitability at a later stage. Methods. We compute the boundaries of the habitable zone around M-, K-, G-, and F-dwarf stars using a 1D cloud-free radiative-convective climate model accounting for the outgassing history of CO2 and H2O from an interior evolution and outgassing model for different interior compositions and stellar luminosity evolutions. Results. The outer edge of the habitable zone strongly depends on the amount of CO2 outgassed from the interior, while the inner edge is mainly determined via the stellar irradiation, as soon as a sufficiently large water reservoir has been outgassed. A build-up of a secondary surface and atmospheric water reservoir for planets around M-dwarf stars is possible even after severe water loss during the high-luminosity pre-main sequence phase as long as some water has been retained within the mantle. For small mantle water reservoirs, between 62 and 125 ppm, a time delay in outgassing from the interior permits such a secondary water reservoir build-up especially for early and mid-M dwarfs because their pre-main sequence lifetimes are shorter than the outgassing timescale. Conclusions. We show that Earth-like stagnant-lid planets allow for habitable surface conditions within a continuous habitable zone that is dependent on interior composition. Secondary outgassing from the interior may allow for habitability of planets around M-dwarf stars after severe water loss during the high-luminosity pre-main sequence phase by rebuilding a surface water reservoir.


2020 ◽  
Vol 633 ◽  
pp. A135 ◽  
Author(s):  
C. Abia ◽  
P. de Laverny ◽  
S. Cristallo ◽  
G. Kordopatis ◽  
O. Straniero

Context. Stars evolving along the asymptotic giant branch (AGB) can become carbon rich in the final part of their evolution. The detailed description of their spectra has led to the definition of several spectral types: N, SC, J, and R. To date, differences among them have been partially established only on the basis of their chemical properties. Aims. An accurate determination of the luminosity function (LF) and kinematics together with their chemical properties is extremely important for testing the reliability of theoretical models and establishing on a solid basis the stellar population membership of the different carbon star types. Methods. Using Gaia Data Release 2 (Gaia DR2) astrometry, we determine the LF and kinematic properties of a sample of 210 carbon stars with different spectral types in the solar neighbourhood with measured parallaxes better than 20%. Their spatial distribution and velocity components are also derived. Furthermore, the use of the infrared Wesenheit function allows us to identify the different spectral types in a Gaia-2MASS diagram. Results. We find that the combined LF of N- and SC-type stars are consistent with a Gaussian distribution peaking at Mbol ∼ −5.2 mag. The resulting LF, however, shows two tails at lower and higher luminosities more extended than those previously found, indicating that AGB carbon stars with solar metallicity may reach Mbol ∼ −6.0 mag. This contrasts with the narrower LF derived in Galactic carbon Miras from previous studies. We find that J-type stars are about half a magnitude fainter on average than N- and SC-type stars, while R-hot stars are half a magnitude brighter than previously found, although fainter in any case by several magnitudes than other carbon types. Part of these differences are due to systematically lower parallaxes measured by Gaia DR2 with respect to HIPPARCOS values, in particular for sources with parallax ϖ < 1 mas. The Galactic spatial distribution and velocity components of the N-, SC-, and J-type stars are very similar, while about 30% of the R-hot stars in the sample are located at distances greater than ∼500 pc from the Galactic plane, and show a significant drift with respect to the local standard of rest. Conclusions. The LF derived for N- and SC-type in the solar neighbourhood fully agrees with the expected luminosity of stars of 1.5−3 M⊙ on the AGB. On a theoretical basis, the existence of an extended low-luminosity tail would require a contribution of extrinsic low-mass carbon stars, while the high-luminosity tail would imply that stars with mass values up to ∼5 M⊙ may become carbon stars on the AGB. J-type stars differ significantly not only in their chemical composition with respect to the N- and SC-types, but also in their LF, which reinforces the idea that these carbon stars belong to a different type whose origin is still unknown. The derived luminosities of R-hot stars means that it is unlikely that these stars are in the red-clump, as previously claimed. On the other hand, the derived spatial distribution and kinematic properties, together with their metallicity values, indicate that most of the N-, SC-, and J-type stars belong to the thin disc population, while a significant fraction of R-hot stars show characteristics compatible with the thick disc.


2020 ◽  
Vol 496 (2) ◽  
pp. 1355-1368
Author(s):  
J-L Halbwachs ◽  
F Kiefer ◽  
Y Lebreton ◽  
H M J Boffin ◽  
F Arenou ◽  
...  

ABSTRACT Double-lined spectroscopic binaries (SB2s) are one of the main sources of stellar masses, as additional observations are only needed to give the inclinations of the orbital planes in order to obtain the individual masses of the components. For this reason, we are observing a selection of SB2s using the SOPHIE spectrograph at the Haute-Provence observatory in order to precisely determine their orbital elements. Our objective is to finally obtain masses with an accuracy of the order of one per cent by combining our radial velocity (RV) measurements and the astrometric measurements that will come from the Gaia satellite. We present here the RVs and the re-determined orbits of 10 SB2s. In order to verify the masses, we will derive from Gaia, we obtained interferometric measurements of the ESO VLTI for one of these SB2s. Adding the interferometric or speckle measurements already published by us or by others for four other stars, we finally obtain the masses of the components of five binary stars, with masses ranging from 0.51 to 2.2 solar masses, including main-sequence dwarfs and some more evolved stars whose location in the HR diagram has been estimated.


Sign in / Sign up

Export Citation Format

Share Document