scholarly journals The bar effect in the galactic gas motions traced by 6.7 GHz methanol maser sources with VERA

2012 ◽  
Vol 8 (S287) ◽  
pp. 419-420
Author(s):  
Naoko Matsumoto ◽  
Mareki Honma ◽  

AbstractTo establish the existence of the galactic bar, ten methanol maser sources around the starting points of the spiral arms were observed with VERA (VLBI Exploration of radio astrometry) using the phase-referencing technique at 6.7 GHz band. For six out of ten sources, absolute proper motions were obtained with better than 3σ accuracy. Using VLBI 3-D data of eight sources, including our five sources, we compared the observed data with three galactic models and found that the model including the bar effect is better to explain the 3-D data, than a flat circular rotation model. A non-flat circular rotation model is also consistent with the VLBI data. Based on a dynamical model with a bar, we estimate an inclination angle of the bar around 35°, which is consistent with previous studies.

2012 ◽  
Vol 8 (S289) ◽  
pp. 410-413
Author(s):  
Naoko Matsumoto ◽  
Mareki Honma ◽  

AbstractTo search for kinematic evidence of the existence of the Galactic bar, we observed 10 methanol maser sources at the near end of the bar with VERA (VLBI Exploration of Radio Astrometry). From these observations, we obtained absolute proper motions of eight sources based on the phase-referencing technique. We compared the motions with the predictions of three simple models in a 3D plane. This comparison showed that a non-flat circular rotation model and a dynamical model including a bar potential reproduce the observed data better than a flat rotation model. In addition, the bar model suggests that the inclination angle of the Galactic bar is around 35°, which is consistent with previous studies.


1988 ◽  
Vol 129 ◽  
pp. 169-174 ◽  
Author(s):  
Mark J. Reid ◽  
James M. Moran ◽  
Carl R. Gwinn

Studies of H2O masers have demonstrated the power of VLBI techniques to measure relative positions with sufficient accuracy (∼ 10 μas) to determine proper motions and to estimate distances to maser sources throughout the Galaxy. The distance to four H2O masers have been determined, and the distance to the center of the Galaxy has been determined to be 7.1 ± 1.5 kpc from observations of the H2O masers in Sgr-B2. Proper motion distances for other H2O masers, and possibly for OH masers, may allow the determination of the fundamental parameters describing the size (Ro) and rotation rate (Θo) of the Galaxy with accuracies of better than 10%. Finally, the measurement of the proper motions of H2O masers in nearby galaxies (< 10 Mpc) is feasible and offers the possibility of direct calibration of the extragalactic distance scale.


2020 ◽  
Vol 500 (3) ◽  
pp. 3213-3239
Author(s):  
Mattia Libralato ◽  
Daniel J Lennon ◽  
Andrea Bellini ◽  
Roeland van der Marel ◽  
Simon J Clark ◽  
...  

ABSTRACT The presence of massive stars (MSs) in the region close to the Galactic Centre (GC) poses several questions about their origin. The harsh environment of the GC favours specific formation scenarios, each of which should imprint characteristic kinematic features on the MSs. We present a 2D kinematic analysis of MSs in a GC region surrounding Sgr A* based on high-precision proper motions obtained with the Hubble Space Telescope. Thanks to a careful data reduction, well-measured bright stars in our proper-motion catalogues have errors better than 0.5 mas yr−1. We discuss the absolute motion of the MSs in the field and their motion relative to Sgr A*, the Arches, and the Quintuplet. For the majority of the MSs, we rule out any distance further than 3–4 kpc from Sgr A* using only kinematic arguments. If their membership to the GC is confirmed, most of the isolated MSs are likely not associated with either the Arches or Quintuplet clusters or Sgr A*. Only a few MSs have proper motions, suggesting that they are likely members of the Arches cluster, in agreement with previous spectroscopic results. Line-of-sight radial velocities and distances are required to shed further light on the origin of most of these massive objects. We also present an analysis of other fast-moving objects in the GC region, finding no clear excess of high-velocity escaping stars. We make our astro-photometric catalogues publicly available.


1998 ◽  
Vol 11 (1) ◽  
pp. 551-551
Author(s):  
N. Zacharias ◽  
M.I. Zacharias ◽  
C. de Vegt ◽  
C.A. Murray

The Second Cape Photographic Catalog (CPC2) contains 276,131 stars covering the entire Southern Hemisphere in a 4-fold overlap pattern. Its mean epoch is 1968, which makes it a key catalog for proper motions. A new reduction of the 5687 plates using on average 40 Hipparcos stars per plate has resulted in a vastly improved catalog with a positional accuracy of about 40 mas (median value) per coordinate, which comes very close to the measuring precision. In particular, for the first time systematic errors depending on magnitude and color can be solved unambiguously and have been removed from the catalog. In combination with the Tycho Catalogue (mean epoch 1991.25) and the upcoming U.S. Naval Observatory CCD Astrograph Catalog (UCAC) project proper motions better than 2 mas/yr can be obtained. This will lead to a vastly improved reference star catalog in the Southern Hemisphere for the final Astrographic Catalogue (AC) reductions, which will then provide propermotions for millions of stars when combined with new epoch data. These data then will allow an uncompromised reduction of the southern Schmidt surveys on the International Celestial Reference System (ICRS).


2007 ◽  
Vol 3 (S242) ◽  
pp. 234-235
Author(s):  
T. Umemoto ◽  
N. Mochizuki ◽  
K. M. Shibata ◽  
D.-G. Roh ◽  
H.-S. Chung

AbstractWe present the results of a mm wavelength methanol maser survey towards massive star forming regions. We have carried out Class II methanol maser observations at 86.6 GHz, 86.9 GHz and 107.0 GHz, simultaneously, using the Nobeyama 45 m telescope. We selected 108 6.7 GHz methanol maser sources with declinations above −25 degrees and fluxes above 20 Jy. The detection limit of maser observations was ~3 Jy. Of the 93 sources surveyed so far, we detected methanol emission in 25 sources (27%) and “maser” emission in nine sources (10%), of which thre “maser” sources are new detections. The detection rate for maser emission is about half that of a survey of the southern sky (Caswell et al. 2000). There is a correlation between the maser flux of 107 GHz and 6.7 GHz/12 GHz emission, but no correlation with the “thermal” (non maser) emission. From results of other molecular line observations, we found that the sources with methanol emission show higher gas temperatures and twice the detection rate of SiO emission. This may suggest that dust evaporation and destruction by shock are responsible for the high abundance of methanol molecules, one of the required physical conditions for maser emission.


2017 ◽  
Vol 13 (S336) ◽  
pp. 277-278
Author(s):  
Artis Aberfelds ◽  
Ivar Shmeld ◽  
Karlis Berzins

AbstractThe first long-term maser (mainly methanol) monitoring program is under way with the radio telescopes of Ventspils International Radio Astronomy Center. The first activity of this program was to develop an observations methodology and data registration and reduction software for the Ventspils telescopes. The developed routines are to be used for maser variability monitoring, investigating short bursts of intensity and a search for new, previously unknown, maser sources. Currently the program consists of 41 methanol masers observed at 6.7 GHz, while new ones are periodically added. The maser sources are observed at 3 – 5 day intervals. It was found that most the sources display a significant level of variability with time, ranging from a few days, up to several months and, perhaps, years. In addition to non-varying masers, several types of maser variability behavior were observed, including: monotonic increases or decreases, un-periodical, quasi-periodic and periodic variations.


1984 ◽  
Vol 110 ◽  
pp. 335-338
Author(s):  
M. H. Schneps ◽  
M. J. Reid ◽  
J. M. Moran ◽  
R. Genzel ◽  
D. Downes ◽  
...  

We report preliminary results of a long term spectral line VLBI experiment to observe internal proper motions of water maser sources in the vicinity of newly formed stars. This technique yields a picture of the three-dimensional kinematics of the region and a measure of the distance to the source. First results from the galactic center source SGR B2 are presented.


2017 ◽  
Vol 13 (S336) ◽  
pp. 301-302
Author(s):  
D. J. van der Walt ◽  
J.-M. Morgan ◽  
J. O. Chibueze ◽  
Q. Zhang

AbstractWe present the results of sub-millimetre observations on three periodic methanol maser sources. Our results indicate that there are geometric differences between some periodic methanol masers which have different variability profiles.


1997 ◽  
Vol 165 ◽  
pp. 561-566
Author(s):  
M. Yoshizawa ◽  
K. Sato ◽  
J. Nishikawa ◽  
T. Fukushima ◽  
M. Miyamoto

AbstractThe projects LIGHT and MIRA are the space-borne and ground-based optical/Infrared-interferometer projects of the National Astronomical Observatory of Japan. The contents of each project are gradually developing, and the descriptions given below are the preliminary ones studied at the present time.LIGHT (Light Interferometer satellite for the studies of Galactic Halo Tracers) is a scanning astrometric satellite for stellar and galactic astronomy planned to be launched between 2007 and 2010 by a M-V launcher of ISAS, Japan. Two sets of Fizeau-type 40cm-pupil interferometers with 1 m baseline are the basic structure of the satellite optics. The multi-color (U, B, V, R, I, and K) CCD arrays are planned to be used in the focal plane of the interferometer, optimized for detecting the precise locations of fringe patterns. LIGHT is expected to observe the parallaxes and proper motions of nearly a hundred million stars up to 18th visual (15thK-band) magnitude with the precision better than 0.1 milli-arcsecond (about 50 microarcsecond in V-band and 90 micro-arcsecond in K-band) in parallaxes and better than 0.1 milli-arcsecond per year in proper motions, as well as the precise photometric characteristics of the observed stars. Almost all of the giant and supergiant stars belonging to the disk and halo components of our Galaxy within 10 to 15 kpc from the sun will be observed by LIGHT to study the most fundamental structure and evolution of the Galaxy. LIGHT will become a precursor of a more sophisticated future astrometric interferometer satellite like GAIA (Lindegren and Perryman, 1996).


1979 ◽  
Vol 53 ◽  
pp. 518-518
Author(s):  
Jacobus A. Petterson

Although the novalike variable UX UMa strongly resembles the classical nova DQ Her in color, emission spectrum, and optical lightcurve, the properties of the rapid oscillations in both systems are quite different. The oscillations differ in period, amplitude, and phase stability, but most remarkably they differ in the characteristics of the “eclipse related phase shift.” The phase shift in DQ Her is explainable by partial obscuration of the disk during eclipse, together with the idea that the oscillating light does not reach us directly from the white dwarf, but is reflected by the disk. It comes from a rotating UV beam originating near the white dwarf surface, which is reflected better by the backside of the disk than by the front side. We show that the phase shift in UX UMa is explainable by the same model, viewed at a different inclination angle i, if it is assumed that at this value of i reflection from the frontside of the disk is better than from the backside. There may be different ways to accomplish this preference. The results suggest that no retrograde rotation of the white dwarf (or retrogradely rotating nonradial pulsation) is needed to explain UX UMa’s eclipse related phase shift. These phase shifts provide a new (and quite accurate) way to determine a system’s inclination angle. Specific predictions are made for the behaviour of amplitude and phase of the oscillations in other eclipsing systems.


Sign in / Sign up

Export Citation Format

Share Document