scholarly journals Cosmic ray production and emission in M82

2011 ◽  
Vol 7 (S284) ◽  
pp. 397-399
Author(s):  
Tova Yoast-Hull ◽  
John Everett ◽  
J. S. Gallagher ◽  
Ellen Zweibel

AbstractStarting from first principles, we construct a simple model for the evolution of energetic particles produced by supernovae in the starburst galaxy M82. The supernova rate, geometry, and properties of the interstellar medium are all well observed in this nearby galaxy. Assuming a uniform interstellar medium and constant cosmic-ray injection rate, we estimate the cosmic-ray proton and primary & secondary electron/positron populations. From these particle spectra, we predict the gamma ray flux and the radio synchrotron spectrum. The model is then compared to the observed radio and gamma-ray spectra of M82 as well as previous models by Torres (2004), Persic et al. (2008), and de Cea del Pozo et al. (2009). Through this project, we aim to build a better understanding of the calorimeter model, in which energetic particle fluxes reflect supernova rates, and a better understanding of the radio-FIR correlation in galaxies.

1996 ◽  
Vol 169 ◽  
pp. 437-446 ◽  
Author(s):  
Hans Bloemen

Gamma-ray astronomy has become a rich field of research and matured significantly since the launch of NASA's Compton Gamma Ray Observatory in April 1991. Studies of the diffuse γ-ray emission of the Galaxy can now be performed in far more detail and extended into the MeV regime, including both continuum and line emission. These studies provide unique insight into various aspects of the interstellar medium, in particular of the cosmic-ray component. This paper gives a brief review on the diffuse Galactic γ-ray emission and summarizes early results and prospects from the Compton Observatory.


2012 ◽  
Vol 8 (S291) ◽  
pp. 419-421
Author(s):  
Shota Kisaka ◽  
Norita Kawanaka

AbstractRecent γ-ray observations by the Fermi Gamma-Ray Space Telescope suggest that the γ-ray millisecond pulsar (MSP) population is separated into two subclasses with respect to pair multiplicity. Here, we calculate the cosmic-ray electron/positron spectra from MSPs. Based on the assumption of equipartition in the pulsar-wind region, the typical energy of electrons/positrons ejected by an MSP with pair multiplicity of the order of unity is ~50 TeV. In this case, we find that a large peak in the 10-50 TeV energy range would be observed in the cosmic-ray electron/positron spectrum. Even if the fraction of pair-starved MSPs is 10%, a large peak would be detectable with future missions such as CALET and CTA.


2014 ◽  
Vol 29 (22) ◽  
pp. 1430030 ◽  
Author(s):  
M. N. Mazziotta ◽  

In this review the current status of several searches for particle dark matter with the Fermi Large Area Telescope instrument is presented. In particular, the current limits on the weakly interacting massive particles, obtained from the analyses of gamma-ray and cosmic ray electron/positron data, will be illustrated.


1985 ◽  
Vol 106 ◽  
pp. 225-233
Author(s):  
Catherine J. Cesarsky

Gamma rays of energy in the range 30 MeV-several GeV, observed by the satellites SAS-2 and COS-B, are emitted in the interstellar medium as a result of interactions with gas of cosmic-ray nuclei in the GeV range (π° decay γ rays) and cosmic-ray electrons of energy > 30 MeV (bremsstrahlung γ rays). W. Hermsen has presented at this conference the γ ray maps of the Galaxy in three “colours” constructed by the COS-B collaboration; the information in such maps is supplemented by radio-continuum studies (see lecture by R. Beck), and is a useful tool for studying the distribution of gas, cosmic rays (c.r.) and magnetic fields in the Galaxy. The variables in this problem are many:large-scale (~ 1 kpc) and small-scale (~10 pc) distributions of c.r. nuclei, of c.r. electrons, of atomic and molecular hydrogen, of magnetic fields, fraction of the observed radiation due to localized sources, etc. Of these, only the distribution - or at least the column densities - of atomic hydrogen are determined in a reliable way. Estimates of the amount of molecular hydrogen can be derived from CO observations or from galaxy counts. The radio and gamma-ray data are not sufficient to disentangle all the other variables in a unique fashion, unless a number of assumptions are made (e.g. Paul et al. 1976). Still, the COS-B team has been able to show that :a) there is a correlation between the gamma-ray emission from local regions, as observed at intermediate latitudes, and the total column density of dust, as measured by galaxy counts. The simplest interpretation is that the density of c.r. nuclei and electrons is uniform within 500 pc of the sun, and that dust and gas are well mixed. Then, γ rays can be used as excellent tracers of local gas complexes (Lebrun et al. 1982, Strong et al. 1982).b) In the same way, the simplest interpretation of the γ-ray emission at energy > 300 MeV from the inner Galaxy, is that c.r. nuclei and electrons are distributed uniformly as well : there is no need for an enhanced density of c.r. in the 3–6 kpc ring; on the contrary, even assuming a uniform density of c.r., the γ-ray data are in conflict with the highest estimates of molecular hydrogen in the radio-astronomy literature (Mayer-Hasselwander et al. 1982).c) In the outer Galaxy, the gradient of c.r. which had become apparent in the early SAS-2 data can now, with COS-B data, be studied in three energy ranges. A gradient in the c.r. distribution is only required to explain the low-energy radiation, which is dominated by bremsstrahlung from relativistic electrons (Bloemen et al., in preparation).


2019 ◽  
Vol 208 ◽  
pp. 14004 ◽  
Author(s):  
N.P. Topchiev ◽  
A.M. Galper ◽  
I.V. Arkhangelskaja ◽  
A.I. Arkhangelskiy ◽  
A.V. Bakaldin ◽  
...  

The future space-based GAMMA-400 gamma-ray telescope will be installed on the Navigator platform of the Russian Astrophysical Observatory. A highly elliptical orbit will provide observations for 7-10 years of many regions of the celestial sphere continuously for a long time (~ 100 days). GAMMA-400 will measure gamma-ray fluxes in the energy range from ~ 20 MeV to several TeV and electron + positron fluxes up to ~ 20 TeV. GAMMA-400 will have an excellent separation of gamma rays from the background of cosmic rays and electrons + positrons from protons and an unprecedented angular (~ 0.01° at Eγ = 100 GeV) and energy (~ 1% at Eγ = 100 GeV) resolutions better than for Fermi-LAT, as well as ground-based facilities, by a factor of 5-10. Observations of GAMMA-400 will provide new fundamental data on discrete sources and spectra of gamma-ray emission and electrons + positrons, as well as the nature of dark matter.


Open Physics ◽  
2012 ◽  
Vol 10 (1) ◽  
pp. 1-31 ◽  
Author(s):  
Stefano Profumo

AbstractWe argue that both the positron fraction measured by PAMELA and the peculiar spectral features reported in the total electron-positron flux measured by ATIC have a very natural explanation in electron-positron pairs produced by nearby pulsars. While this possibility was pointed out a long time ago, the greatly improved quality of current data potentially allow to reverse-engineer the problem: given the regions of pulsar parameter space favored by PAMELA and by ATIC, are there known pulsars that explain the data with reasonable assumptions on the injected electron-positron pairs? In the context of simple benchmark models for estimating the electron-positron output, we consider all known pulsars, as listed in the most complete available catalogue. We find that it is unlikely that a single pulsar be responsible for both the PAMELA positron fraction anomaly and for the ATIC excess, although two single sources are in principle enough to explain both experimental results. The PAMELA excess positrons likely come from a set of mature pulsars (age ∼ × 106 yr), with a distance of 0.8–1 kpc, or from a single, younger and closer source like Geminga. The ATIC data require a larger (and less plausible) energy output, and favor an origin associated to powerful, more distant (1–2 kpc) and younger (age ∼ × 5 × 105 yr) pulsars. We list several candidate pulsars that can individually or coherently contribute to explain the PAMELA and ATIC data. Although generally suppressed, we find that the contribution of pulsars more distant than 1–2 kpc could contribute for the ATIC excess. Finally, we stress the multi-faceted and decisive role that Fermi-LAT will play in the very near future by (1) providing us with an exquisite measurement of the electron-positron flux, (2) unveiling the existence of as yet undetected gamma-ray pulsars, and (3) searching for anisotropies in the arrival direction of high-energy electrons and positrons.


Author(s):  
Maria Concetta Maccarone ◽  
Giovanni La Rosa ◽  
Osvaldo Catalano ◽  
Salvo Giarrusso ◽  
Alberto Segreto ◽  
...  

AbstractUVscope is an instrument, based on a multi-pixel photon detector, developed to support experimental activities for high-energy astrophysics and cosmic ray research. The instrument, working in single photon counting mode, is designed to directly measure light flux in the wavelengths range 300-650 nm. The instrument can be used in a wide field of applications where the knowledge of the nocturnal environmental luminosity is required. Currently, one UVscope instrument is allocated onto the external structure of the ASTRI-Horn Cherenkov telescope devoted to the gamma-ray astronomy at very high energies. Being co-aligned with the ASTRI-Horn camera axis, UVscope can measure the diffuse emission of the night sky background simultaneously with the ASTRI-Horn camera, without any interference with the main telescope data taking procedures. UVscope is properly calibrated and it is used as an independent reference instrument for test and diagnostic of the novel ASTRI-Horn telescope.


Author(s):  
Alessandro De Angelis ◽  
Vincent Tatischeff ◽  
Andrea Argan ◽  
Søren Brandt ◽  
Andrea Bulgarelli ◽  
...  

AbstractThe energy range between about 100 keV and 1 GeV is of interest for a vast class of astrophysical topics. In particular, (1) it is the missing ingredient for understanding extreme processes in the multi-messenger era; (2) it allows localizing cosmic-ray interactions with background material and radiation in the Universe, and spotting the reprocessing of these particles; (3) last but not least, gamma-ray emission lines trace the formation of elements in the Galaxy and beyond. In addition, studying the still largely unexplored MeV domain of astronomy would provide for a rich observatory science, including the study of compact objects, solar- and Earth-science, as well as fundamental physics. The technological development of silicon microstrip detectors makes it possible now to detect MeV photons in space with high efficiency and low background. During the last decade, a concept of detector (“ASTROGAM”) has been proposed to fulfil these goals, based on a silicon hodoscope, a 3D position-sensitive calorimeter, and an anticoincidence detector. In this paper we stress the importance of a medium size (M-class) space mission, dubbed “ASTROMEV”, to fulfil these objectives.


Sign in / Sign up

Export Citation Format

Share Document