scholarly journals Dissecting cosmic-ray electron-positron data with Occam’s razor: the role of known pulsars

Open Physics ◽  
2012 ◽  
Vol 10 (1) ◽  
pp. 1-31 ◽  
Author(s):  
Stefano Profumo

AbstractWe argue that both the positron fraction measured by PAMELA and the peculiar spectral features reported in the total electron-positron flux measured by ATIC have a very natural explanation in electron-positron pairs produced by nearby pulsars. While this possibility was pointed out a long time ago, the greatly improved quality of current data potentially allow to reverse-engineer the problem: given the regions of pulsar parameter space favored by PAMELA and by ATIC, are there known pulsars that explain the data with reasonable assumptions on the injected electron-positron pairs? In the context of simple benchmark models for estimating the electron-positron output, we consider all known pulsars, as listed in the most complete available catalogue. We find that it is unlikely that a single pulsar be responsible for both the PAMELA positron fraction anomaly and for the ATIC excess, although two single sources are in principle enough to explain both experimental results. The PAMELA excess positrons likely come from a set of mature pulsars (age ∼ × 106 yr), with a distance of 0.8–1 kpc, or from a single, younger and closer source like Geminga. The ATIC data require a larger (and less plausible) energy output, and favor an origin associated to powerful, more distant (1–2 kpc) and younger (age ∼ × 5 × 105 yr) pulsars. We list several candidate pulsars that can individually or coherently contribute to explain the PAMELA and ATIC data. Although generally suppressed, we find that the contribution of pulsars more distant than 1–2 kpc could contribute for the ATIC excess. Finally, we stress the multi-faceted and decisive role that Fermi-LAT will play in the very near future by (1) providing us with an exquisite measurement of the electron-positron flux, (2) unveiling the existence of as yet undetected gamma-ray pulsars, and (3) searching for anisotropies in the arrival direction of high-energy electrons and positrons.

2019 ◽  
Vol 208 ◽  
pp. 14004 ◽  
Author(s):  
N.P. Topchiev ◽  
A.M. Galper ◽  
I.V. Arkhangelskaja ◽  
A.I. Arkhangelskiy ◽  
A.V. Bakaldin ◽  
...  

The future space-based GAMMA-400 gamma-ray telescope will be installed on the Navigator platform of the Russian Astrophysical Observatory. A highly elliptical orbit will provide observations for 7-10 years of many regions of the celestial sphere continuously for a long time (~ 100 days). GAMMA-400 will measure gamma-ray fluxes in the energy range from ~ 20 MeV to several TeV and electron + positron fluxes up to ~ 20 TeV. GAMMA-400 will have an excellent separation of gamma rays from the background of cosmic rays and electrons + positrons from protons and an unprecedented angular (~ 0.01° at Eγ = 100 GeV) and energy (~ 1% at Eγ = 100 GeV) resolutions better than for Fermi-LAT, as well as ground-based facilities, by a factor of 5-10. Observations of GAMMA-400 will provide new fundamental data on discrete sources and spectra of gamma-ray emission and electrons + positrons, as well as the nature of dark matter.


2005 ◽  
Vol 20 (29) ◽  
pp. 6735-6738 ◽  
Author(s):  
CATIA GRIMANI

We present preliminary results of the estimate of isolated pulsar contribution to the positron and electron interstellar fluxes when a polar cap model is assumed. Pulsars of all ages outside their host remnants have been considered. Cosmic-ray positron observations above a few GeV seem to indicate that an outer gap model is favoured over a polar cap model when the contribution of young pulsars only is taken into account. Here we show that pulsars with ages ranging between 10 kyr and 600 kyr, escaped from their remnants, give a contribution to the interstellar positron flux larger than that proposed in literature for the whole sample of pulsars younger than 10 kyr. Consequently, this result also indicates that outer gap electromagnetic energy losses overcome those at the polar cap. Future, low error e+/(e+ + e-) ratio observations as well as high energy pulsed gamma-ray measurements will allow us to verify this possibility.


2019 ◽  
Vol 209 ◽  
pp. 01007
Author(s):  
Francesco Nozzoli

Precision measurements by AMS of the fluxes of cosmic ray positrons, electrons, antiprotons, protons as well as their rations reveal several unexpected and intriguing features. The presented measurements extend the energy range of the previous observations with much increased precision. The new results show that the behavior of positron flux at around 300 GeV is consistent with a new source that produce equal amount of high energy electrons and positrons. In addition, in the absolute rigidity range 60–500 GV, the antiproton, proton, and positron fluxes are found to have nearly identical rigidity dependence and the electron flux exhibits different rigidity dependence.


Author(s):  
Maria Concetta Maccarone ◽  
Giovanni La Rosa ◽  
Osvaldo Catalano ◽  
Salvo Giarrusso ◽  
Alberto Segreto ◽  
...  

AbstractUVscope is an instrument, based on a multi-pixel photon detector, developed to support experimental activities for high-energy astrophysics and cosmic ray research. The instrument, working in single photon counting mode, is designed to directly measure light flux in the wavelengths range 300-650 nm. The instrument can be used in a wide field of applications where the knowledge of the nocturnal environmental luminosity is required. Currently, one UVscope instrument is allocated onto the external structure of the ASTRI-Horn Cherenkov telescope devoted to the gamma-ray astronomy at very high energies. Being co-aligned with the ASTRI-Horn camera axis, UVscope can measure the diffuse emission of the night sky background simultaneously with the ASTRI-Horn camera, without any interference with the main telescope data taking procedures. UVscope is properly calibrated and it is used as an independent reference instrument for test and diagnostic of the novel ASTRI-Horn telescope.


1997 ◽  
Vol 170 ◽  
pp. 22-24 ◽  
Author(s):  
Seth. W. Digel ◽  
Stanley D. Hunter ◽  
Reshmi Mukherjee ◽  
Eugéne J. de Geus ◽  
Isabelle A. Grenier ◽  
...  

EGRET, the high-energy γ-ray telescope on the Compton Gamma-Ray Observatory, has the sensitivity, angular resolution, and background rejection necessary to study diffuse γ-ray emission from the interstellar medium (ISM). High-energy γ rays produced in cosmic-ray (CR) interactions in the ISM can be used to determine the CR density and calibrate the CO line as a tracer of molecular mass. Dominant production mechanisms for γ rays of energies ∼30 MeV–30 GeV are the decay of pions produced in collisions of CR protons with ambient matter and Bremsstrahlung scattering of CR electrons.


2020 ◽  
Vol 497 (2) ◽  
pp. 2455-2468
Author(s):  
Michael W Toomey ◽  
Foteini Oikonomou ◽  
Kohta Murase

ABSTRACT We present a search for high-energy γ-ray emission from 566 Active Galactic Nuclei at redshift z > 0.2, from the 2WHSP catalogue of high-synchrotron peaked BL Lac objects with 8 yr of Fermi-LAT data. We focus on a redshift range where electromagnetic cascade emission induced by ultra-high-energy cosmic rays can be distinguished from leptonic emission based on the spectral properties of the sources. Our analysis leads to the detection of 160 sources above ≈5σ (TS ≥25) in the 1–300 GeV energy range. By discriminating significant sources based on their γ-ray fluxes, variability properties, and photon index in the Fermi-LAT energy range, and modelling the expected hadronic signal in the TeV regime, we select a list of promising sources as potential candidate ultra-high-energy cosmic ray emitters for follow-up observations by Imaging Atmospheric Cherenkov Telescopes.


2018 ◽  
Vol 2018 ◽  
pp. 1-23 ◽  
Author(s):  
Daniele Gaggero ◽  
Mauro Valli

The quest for the elusive dark matter (DM) that permeates the Universe (and in general the search for signatures of physics beyond the Standard Model at astronomical scales) provides a unique opportunity and a tough challenge to the high energy astrophysics community. In particular, the so-called DMindirect searches—mostly focused on a class of theoretically well-motivated DM candidates such as the weakly interacting massive particles—are affected by a complex astrophysical background of cosmic radiation. The understanding and modeling of such background require a deep comprehension of an intricate classical plasma physics problem, i.e., the interaction between high energy charged particles, accelerated in peculiar astrophysical environments, and magnetohydrodynamic turbulence in the interstellar medium of our galaxy. In this review we highlight several aspects of this exciting interplay between the most recent claims of DM annihilation/decay signatures from the sky and the galactic cosmic-ray research field. Our purpose is to further stimulate the debate about viable astrophysical explanations, discussing possible directions that would help breaking degeneracy patterns in the interpretation of current data. We eventually aim to emphasize how a deep knowledge on the physics of CR transport is therefore required to tackle the DM indirect search program at present and in the forthcoming years.


1990 ◽  
Vol 123 ◽  
pp. 537-541
Author(s):  
Carl E. Fichtel ◽  
Mehmet E. Ozel ◽  
Robert G. Stone

AbstractPresent and future measurement of the Large Magellanic Cloud (LMC) particularly in the radio and high energy gamma ray range offer the possibility of understanding the density and distribution of the cosmic rays in a galaxy other than our own and the role that they play in galactic dynamic balance. After a study of the consistency of the measurements and interpretation of the synchrotron radiation from our own galaxy, the cosmic ray distribution for the LMC is calculated under the assumption that the cosmic ray nucleon to electron ratio is the same and the relation to the magnetic fields are the same, although the implications of alternatives are discussed. It is seen that the cosmic ray density level appears to be similar to that in our own galaxy, but varying in position in a manner generally consistent with the concept of correlation with the matter on a broad scale.


1986 ◽  
Vol 6 (3) ◽  
pp. 335-338 ◽  
Author(s):  
D. Ciampa ◽  
R. W. Clay ◽  
C. L. Corani ◽  
P. G. Edwards ◽  
J. R. Patterson

AbstractThe Buckland Park air shower array is being developed particularly for use as an ultra-high-energy gamma ray astronomy telescope. The properties of this instrument are described with an emphasis on improvements being made to its angular resolution. Some early data are presented to illustrate the way in which the data obtained will be used.


Sign in / Sign up

Export Citation Format

Share Document