scholarly journals Electric current diagnostics in the magnetosphere of neutron stars

2012 ◽  
Vol 8 (S291) ◽  
pp. 505-507
Author(s):  
Alexander V. Stepanov ◽  
Valery V. Zaitsev

AbstractActive neutron stars – SGRs, reveal the high-quality QPOs at the ‘pulsating tail’ phase. We suggest diagnostics of the trapped fireball plasma, the source of high-frequency pulsations, using coronal seismology. The trapped fireball is represented as a set of current-carrying loops - equivalent of electric circuits. Our approach gives the following magnetosphere parameters in SGRs: an electric current of (2−8) × 1019 A, magnetic field of (0.6−2.7) × 1013 G, and electrons density of (1.3−6.0) × 1016 cm−3. We show high-frequency QPOs can be self-excited for a smaller electric current than the maximum current and/or due to the parametric resonance.

Solar Energy ◽  
2003 ◽  
Author(s):  
Tetsuo Munakata ◽  
Satoshi Someya

Conversion efficiency of solar cell is strongly affected by quality of substrate and the quality of substrate is influenced by melt convection if the substrate crystal is grown by melt growth technique. Therefore, melt convection control techniques are important to produce a high quality single crystal. In this paper, we have proposed a high frequency magnetic field applied CZ method and investigated the effect of high frequency magnetic field on silicon melt convection. The result reveals that the high frequency magnetic fields affect the tendency of the melt convection: until certain intensity of the high frequency magnetic field, the melt convection is suppressed and above such intensity of the high frequency magnetic field, the melt convection intensity is enhanced. This result indicates that the melt convection can be controlled by the high frequency magnetic field and the high quality silicon single crystals will be grown by this method.


2021 ◽  
Author(s):  
Caterina Tiburzi ◽  
Golam Shaifullah ◽  
Pietro Zucca

<p>Pulsars are highly-magnetized, fast-rotating neutron stars whose radiation is mainly detected at radio frequencies. Their clock-like emission and high degree of linear polarization make them ideal background sources to probe the electron density and magnetic field of the interplanetary medium.<br>The Soltrack project is a cutting-edge experiment that combines high-quality pulsar observations carried out with LOFAR with the study of the heliosphere and its phenomena. It recently confirmed the first evidence of the Solar cycle's impact on pulsar data, developed a new software to detect pulsar occultations by coronal mass ejections, identified the influence of Solar streamers on pulsar observations and applied pulsar-derived measurements to the validation efforts of the EUHFORIA magneto-hydrodynamic software, that simulate the Solar wind properties for Space weather purposes.<br>Here I will describe the fundamental concepts at the basis of the Soltrack experiments, and describe the results reached while paving the road for the application of pulsar data to heliospheric analyses.</p>


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Müller ◽  
Janna Kuchinka ◽  
Thomas Heinze

Abstract Magnetic nanocomposites are a class of smart materials that have attracted recent interest as drug delivery systems or as medical implants. A new approach toward the biocompatible nanocomposites suitable for remote melting is presented. It is shown that magnetite nanoparticles (MNPs) can be embedded into a matrix of biocompatible thermoplastic dextran esters. For that purpose, fatty acid esters of dextran with adjustable melting points in the range of 30–140 °C were synthesized. Esterification of the polysaccharide by activation of the acid as iminium chlorides guaranteed mild reaction conditions leading to high-quality products as confirmed by Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy as well as by gel permeation chromatography (GPC). A method for the preparation of magnetically responsive bionanocomposites (BNCs) was developed consisting of combined dissolution/suspension of the dextran ester and hydrophobized MNPs in an organic solvent followed by homogenization with ultrasonication, casting of the solution, drying and melting of the composite for a defined shaping. This process leads to a uniform distribution of MNPs in BNC as revealed by scanning electron microscope (SEM). Samples of different geometries were exposed to high-frequency alternating magnetic field (AMF). It could be shown that defined remote melting of such biocompatible nanocomposites is possible for the first time. This may lead to a new class of magnetic remote-control systems, which are suitable for controlled release applications or self-healing materials. BNCs containing biocompatible dextran fatty acid ester melting close to human body temperature were prepared and loaded with Rhodamine B (RhB) or green fluorescent protein (GFP) as model drugs to evaluate their potential use as drug delivery system. The release of the model drugs from the magnetic BNC investigated under the influence of a high-frequency AMF (20 kA/m at 400 kHz) showed that on-demand release is realized by applying the external AMF. The BNC possessed a long-term stability (28 d) of the incorporated iron oxide particles after incubation in artificial body fluids. Temperature-dependent mobility investigations of MNP in the molten BNC were carried out by optical microscopy, magnetometry, alternating current (AC) susceptibility, and Mössbauer spectroscopy measurements. Optical microscopy shows a movement of agglomerates and texturing in the micrometer scale, whereas AC susceptometry and Mössbauer spectroscopy investigations reveal that the particles perform diffusive Brownian motion in the liquid polymer melt as separated particles rather than as large agglomerates. Furthermore, a texturing of MNP in the polymer matrix by a static magnetic field gradient was investigated. First results on the preparation of cross-linkable dextran esters are shown. Cross-linking after irradiation of the BNC prevents melting that can be used to influence texturing procedures.


1930 ◽  
Vol 85 (3) ◽  
pp. 675-686
Author(s):  
Fritz Bischoff ◽  
H.J. Ullmann ◽  
Elsie Hill ◽  
M. Louisa Long

2000 ◽  
Vol 177 ◽  
pp. 699-702 ◽  
Author(s):  
E. V. Gotthelf ◽  
G. Vasisht

AbstractWe propose a simple explanation for the apparent dearth of radio pulsars associated with young supernova remnants (SNRs). Recent X-ray observations of young remnants have revealed slowly rotating (P∼ 10s) central pulsars with pulsed emission above 2 keV, lacking in detectable radio emission. Some of these objects apparently have enormous magnetic fields, evolving in a manner distinct from the Crab pulsar. We argue that these X-ray pulsars can account for a substantial fraction of the long sought after neutron stars in SNRs and that Crab-like pulsars are perhaps the rarer, but more highly visible example of these stellar embers. Magnetic field decay likely accounts for their high X-ray luminosity, which cannot be explained as rotational energy loss, as for the Crab-like pulsars. We suggest that the natal magnetic field strength of these objects control their subsequent evolution. There are currently almost a dozen slow X-ray pulsars associated with young SNRs. Remarkably, these objects, taken together, represent at least half of the confirmed pulsars in supernova remnants. This being the case, these pulsars must be the progenitors of a vast population of previously unrecognized neutron stars.


1996 ◽  
Vol 160 ◽  
pp. 435-436
Author(s):  
H.-J. Wiebicke ◽  
U. Geppert

AbstractWe present a scenario of magnetic field (MF) evolution of newly-born neutron stars (NSs). Numerical calculations show that in the hot phase of young NSs the MF can be amplified by thermoelectric effects, starting from a moderately strong seed-field. Therefore, there is no need to assume a 1012G dipole field immediately after the gravitational collapse of the supernova (SN) event. The widely accepted scenario for such a field to be produced by flux conservation during the collapse is critically discussed. Instead, it can be generated by amplification and selection effects in the first 104yrs, and by the subsequent fast ohmic decay of higher multipole components, when the NS cools down.


Sign in / Sign up

Export Citation Format

Share Document