Sampling the heliosphere through low-frequency observations of pulsars

Author(s):  
Caterina Tiburzi ◽  
Golam Shaifullah ◽  
Pietro Zucca

<p>Pulsars are highly-magnetized, fast-rotating neutron stars whose radiation is mainly detected at radio frequencies. Their clock-like emission and high degree of linear polarization make them ideal background sources to probe the electron density and magnetic field of the interplanetary medium.<br>The Soltrack project is a cutting-edge experiment that combines high-quality pulsar observations carried out with LOFAR with the study of the heliosphere and its phenomena. It recently confirmed the first evidence of the Solar cycle's impact on pulsar data, developed a new software to detect pulsar occultations by coronal mass ejections, identified the influence of Solar streamers on pulsar observations and applied pulsar-derived measurements to the validation efforts of the EUHFORIA magneto-hydrodynamic software, that simulate the Solar wind properties for Space weather purposes.<br>Here I will describe the fundamental concepts at the basis of the Soltrack experiments, and describe the results reached while paving the road for the application of pulsar data to heliospheric analyses.</p>

1968 ◽  
Vol 1 (3) ◽  
pp. 114-115
Author(s):  
J.G. Ables

The cosmic ray flux in the energy range 100 MeV/nucleon ≤ E ≤ 1 GeV/nucleon is remarkable for its high degree of isotropy. Observed deviations from isotropy seldom exceed a few per cent and are commonly much smaller. The mechanism responsible for this isotropy is presumed to be multiple, large-angle scattering of the charged cosmic ray particles by irregularities of the interplanetary magnetic field. While generally precluding any hope of discovering a source-related anisotropy of the flux in this energy range, it is just this strong interaction of the cosmic rays with the interplanetary medium that allows the study of the small observed anisotropies, both persistent and transient, to yield considerable information about the structure of the interplanetary medium (the solar wind and its entrapped magnetic field).


2017 ◽  
Vol 13 (S337) ◽  
pp. 279-282 ◽  
Author(s):  
C. Tiburzi ◽  
J. P. W. Verbiest

AbstractWe operate the six German stations of the LOw Frequency ARray as standalone telescopes to observe more than 100 pulsars every week. To date, we have collected almost four years of high-quality data at an unprecedented weekly cadence. This allows us to perform a wide variety of analyses aimed at characterising the magnetoionic plasma crossed by pulsar radiation. In particular, our studies are focused on electron density variations in the interstellar and interplanetary media, the Galactic and interplanetary magnetic field, scintillation, and extreme scattering events. Here we report the first results from our Solar wind monitoring campaign.


1996 ◽  
Vol 14 (8) ◽  
pp. 777-785 ◽  
Author(s):  
V. Carbone ◽  
R. Bruno

Abstract. Some signed measures in turbulence are found to be sign-singular, that is their sign reverses continuously on arbitrary finer scales with a reduction of the cancellation between positive and negative contributions. The strength of the singularity is characterized by a scaling exponent κ, the cancellation exponent. In the present study by using some turbulent samples of the velocity field obtained from spacecraft measurements in the interplanetary medium, we show that sign-singularity is present everywhere in low-frequency turbulent samples. The cancellation exponent can be related to the characteristic scaling laws of turbulence. Differences in the values of κ, calculated in both high- and low-speed streams, allow us to outline some physical differences in the samples with different velocities.


2016 ◽  
Vol 12 (S327) ◽  
pp. 67-70
Author(s):  
J. Palacios ◽  
C. Cid ◽  
E. Saiz ◽  
A. Guerrero

AbstractWe have investigated the case of a coronal mass ejection that was eroded by the fast wind of a coronal hole in the interplanetary medium. When a solar ejection takes place close to a coronal hole, the flux rope magnetic topology of the coronal mass ejection (CME) may become misshapen at 1 AU as a result of the interaction. Detailed analysis of this event reveals erosion of the interplanetary coronal mass ejection (ICME) magnetic field. In this communication, we study the photospheric magnetic roots of the coronal hole and the coronal mass ejection area with HMI/SDO magnetograms to define their magnetic characteristics.


2021 ◽  
Author(s):  
Vertti Tarvus ◽  
Lucile Turc ◽  
Markus Battarbee ◽  
Jonas Suni ◽  
Xóchitl Blanco-Cano ◽  
...  

<p>Foreshock cavitons are transient structures forming in Earth's foreshock as a result of non-linear interaction of ultra-low frequency waves. Cavitons are characterised by simultaneous density and magnetic field depressions with sizes of the order of 1 Earth radius. These transients are advected by the solar wind towards the bow shock, where they may accumulate shock-reflected suprathermal ions and become spontaneous hot flow anomalies (SHFAs), which are characterised by an enhanced temperature and a perturbed bulk flow inside them.<br>    Both spacecraft measurements and hybrid simulations have shown that while cavitons and SHFAs are carried towards the bow shock by the solar wind, their motion in the solar wind rest frame is directed upstream. In this work, we have made a statistical analysis of the propagation properties of cavitons and SHFAs using Vlasiator, a hybrid-Vlasov simulation model. In agreement with previous studies, we find the transients propagating upstream in the solar wind rest frame. Our results show that the solar wind rest frame motion of cavitons is aligned with the direction of the interplanetary magnetic field, while the motion of SHFAs deviates from this direction. We find that SHFAs have a faster solar wind rest frame propagation speed than cavitons, which is due to an increase in the sound speed near the bow shock, affecting the speed of the waves in the foreshock.</p>


1996 ◽  
Vol 165 ◽  
pp. 57-64
Author(s):  
Pranab Ghosh

In this symposium, I have been given the task of summarizing our current understanding of the evolutionary history of spin periods of the neutron stars that we now see as binary and millisecond pulsars, i.e., recycled pulsars. We believe that a newborn, fast-spinning neutron star (with a rather high magnetic field ∼1011–1013 G) in a binary system first operates as a spin-powered pulsar, subsequently as an accretion-powered pulsar when accretion begins after the pulsar has been spun down adequately, and finally as a spin-powered pulsar for the second time after having been recycled to become a very fast-rotating neutron star (with a rather low magnetic field ∼108–1011 G) (see Ghosh 1994a, b, hereafter G94a, b).


2019 ◽  
Vol 627 ◽  
pp. A96 ◽  
Author(s):  
R. Bruno ◽  
D. Telloni ◽  
L. Sorriso-Valvo ◽  
R. Marino ◽  
R. De Marco ◽  
...  

Fluctuations of solar wind magnetic field and plasma parameters exhibit a typical turbulence power spectrum with a spectral index ranging between ∼5/3 and ∼3/2. In particular, at 1 AU, the magnetic field spectrum, observed within fast corotating streams, also shows a clear steepening for frequencies higher than the typical proton scales, of the order of ∼3 × 10−1 Hz, and a flattening towards 1/f at frequencies lower than ∼10−3 Hz. However, the current literature reports observations of the low-frequency break only for fast streams. Slow streams, as observed to date, have not shown a clear break, and this has commonly been attributed to slow wind intervals not being long enough. Actually, because of the longer transit time from the Sun, slow wind turbulence would be older and the frequency break would be shifted to lower frequencies with respect to fast wind. Based on this hypothesis, we performed a careful search for long-lasting slow wind intervals throughout 12 years of Wind satellite measurements. Our search, based on stringent requirements not only on wind speed but also on the level of magnetic compressibility and Alfvénicity of the turbulent fluctuations, yielded 48 slow wind streams lasting longer than 7 days. This result allowed us to extend our study to frequencies sufficiently low and, for the first time in the literature, we are able to show that the 1/f magnetic spectral scaling is also present in the slow solar wind, provided the interval is long enough. However, this is not the case for the slow wind velocity spectrum, which keeps the typical Kolmogorov scaling throughout the analysed frequency range. After ruling out the possible role of compressibility and Alfvénicity for the 1/f scaling, a possible explanation in terms of magnetic amplitude saturation, as recently proposed in the literature, is suggested.


2020 ◽  
Author(s):  
Harry Manners ◽  
Adam Masters

<p>The magnetosphere of Jupiter is the largest planetary magnetosphere in the solar system, and plays host to internal dynamics that remain, in many ways, mysterious. Prominent among these mysteries are the ultra-low-frequency (<strong>ULF</strong>) pulses ubiquitous in this system. Pulsations in the electromagnetic emissions, magnetic field and flux of energetic particles have been observed for decades, with little to indicate the source mechanism. While ULF waves have been observed in the magnetospheres of all the magnetized planets, the magnetospheric environment at Jupiter seems particularly conducive to the emergence of ULF waves over a wide range of periods (1-100+ minutes). This is mainly due to the high variability of the system on a global scale: internal plasma sources and a powerful intrinsic magnetic field produce a highly-compressible magnetospheric cavity, which can be reduced to a size significantly smaller than its nominal expanded state by variations in the dynamic pressure of the solar wind. Compressive fronts in the solar wind, turbulent surface interactions on the magnetopause and internal plasma processes can also all lead to ULF wave activity inside the magnetosphere.</p><p>To gain the first comprehensive view of ULF waves in the Jovian system, we have performed a heritage survey of magnetic field data measured by six spacecraft that visited the magnetosphere (Galileo, Ulysses, Voyager 1 & 2 and Pioneer 10 & 11). We found several-hundred wave events consisting of wave packets parallel or transverse to the mean magnetic field, interpreted as fast-mode or Alfvénic MHD wave activity, respectively. Parallel and transverse events were often coincident in space and time, which may be evidence of global Alfvénic resonances of the magnetic field known as field-line-resonances. We found that 15-, 30- and 40-minute periods dominate the Jovian ULF wave spectrum, in agreement with the dominant “magic frequencies” often reported in existing literature.</p><p>We will discuss potential driving mechanisms as informed by the results of the heritage survey, how this in turn affects our understanding of energy transfer in the magnetosphere, and potential investigations to be made using data from the JUNO spacecraft. We will also discuss the potential for multiple resonant cavities, and how the resonance modes of the Jovian magnetosphere may differ from those of the other magnetized planets.</p>


2019 ◽  
Vol 37 (5) ◽  
pp. 877-889
Author(s):  
Anatoli A. Petrukovich ◽  
Olga M. Chugunova ◽  
Pavel I. Shustov

Abstract. Observations of Earth's bow shock during high-β (ratio of thermal to magnetic pressure) solar wind streams are rare. However, such shocks are ubiquitous in astrophysical plasmas. Typical solar wind parameters related to high β (here β>10) are as follows: low speed, high density, and a very low interplanetary magnetic field of 1–2 nT. These conditions are usually quite transient and need to be verified immediately upstream of the observed shock crossings. In this report, three characteristic crossings by the Cluster project (from the 22 found) are studied using multipoint analysis, allowing us to determine spatial scales. The main magnetic field and density spatial scale of about a couple of hundred of kilometers generally corresponds to the increased proton convective gyroradius. Observed magnetic variations are different from those for supercritical shocks, with β∼1. Dominant magnetic variations in the shock transition have amplitudes much larger than the background field and have a frequency of ∼ 0.3–0.5 Hz (in some events – 1–2 Hz). The wave polarization has no stable phase and is closer to linear, which complicates the determination of the wave propagation direction. Spatial scales (wavelengths) of variations are within several tens to a couple of hundred of kilometers.


1996 ◽  
Vol 175 ◽  
pp. 343-344
Author(s):  
H. Rottmann ◽  
K.-H. Mack ◽  
U. Klein ◽  
R. Wielebinski ◽  
N. Kassim ◽  
...  

In the framework of our multi-frequency study of Virgo A we have performed observations of Vir A at 10.55 GHz with the Effelsberg 100-m telescope. Using our improved CLEAN procedure for single dish data we have increased the dynamic range to some 40 dB.By applying our newly developed polarization CLEANing technique we are able to diminish instrumental polarization effects. Since Faraday rotation is negligible at λ2.8 cm the measured linear polarization is a direct trace of the projected magnetic field in Vir A. In combination with low-frequency data obtained with the VLA it is possible to determine parameters like spectral indices, break frequencies, and spectral ages.


Sign in / Sign up

Export Citation Format

Share Document