scholarly journals Star-forming Substructure within Molecular Clouds

2012 ◽  
Vol 8 (S292) ◽  
pp. 29-34
Author(s):  
James Di Francesco

AbstractWide-field far-infrared/submillimeter continuum maps of molecular clouds by the Herschel Space Observatory GBS and HOBYS surveys are revealing the star-forming substructures that lead to star formation in dense gas. In particular, these maps have revealed the central role in clouds of filaments, likely formed through turbulent motions. These filaments appear to be non-isothermal and fragment into cores only when their column densities exceed a stability threshold. Organizations of filament networks suggest the relative role of turbulence and gravity can be traced in different parts of a cloud, and filament intersections may lead to larger amounts of mass flow that form the precursors of high-mass stars or clusters.

2018 ◽  
Vol 617 ◽  
pp. A14 ◽  
Author(s):  
S. Paron ◽  
M. B. Areal ◽  
M. E. Ortega

Aims. Estimating molecular abundances ratios from directly measuring the emission of the molecules toward a variety of interstellar environments is indeed very useful to advance our understanding of the chemical evolution of the Galaxy, and hence of the physical processes related to the chemistry. It is necessary to increase the sample of molecular clouds, located at different distances, in which the behavior of molecular abundance ratios, such as the 13CO/C18O ratio, is studied in detail. Methods. We selected the well-studied high-mass star-forming region G29.96−0.02, located at a distance of about 6.2 kpc, which is an ideal laboratory to perform this type of study. To study the 13CO/C18O abundance ratio (X13∕18) toward this region, we used 12CO J = 3–2 data obtained from the CO High-Resolution Survey, 13CO and C18O J = 3–2 data from the 13CO/C18O (J = 3–2) Heterodyne Inner Milky Way Plane Survey, and 13CO and C18O J = 2–1 data retrieved from the CDS database that were observed with the IRAM 30 m telescope. The distribution of column densities and X13∕18 throughout the extension of the analyzed molecular cloud was studied based on local thermal equilibrium (LTE) and non-LTE methods. Results. Values of X13∕18 between 1.5 and 10.5, with an average of about 5, were found throughout the studied region, showing that in addition to the dependency of X13∕18 and the galactocentric distance, the local physical conditions may strongly affect this abundance ratio. We found that correlating the X13∕18 map with the location of the ionized gas and dark clouds allows us to suggest in which regions the far-UV radiation stalls in dense gaseous components, and in which regions it escapes and selectively photodissociates the C18O isotope. The non-LTE analysis shows that the molecular gas has very different physical conditions, not only spatially throughout the cloud, but also along the line of sight. This type of study may represent a tool for indirectly estimating (from molecular line observations) the degree of photodissociation in molecular clouds, which is indeed useful to study the chemistry in the interstellar medium.


1999 ◽  
Vol 51 (6) ◽  
pp. 751-764 ◽  
Author(s):  
Yasuo Fukui ◽  
Toshikazu Onishi ◽  
Rihei Abe ◽  
Akiko Kawamura ◽  
Kengo Tachihara ◽  
...  

Abstract We present extensive observations of the Carina arm region in the 2.6 mm CO (J = 1−0) emission with the NANTEN telescope in Chile. The observations have revealed 120 molecular clouds which are distributed in an area of 283° < l < 293° and 2° .5 < b < 10°. Because of its vertical elongation to the galactic plane, the clouds are named the Carina flare. H I and far-infrared emission show a cavity-like distribution corresponding to the molecular clouds, and soft X-ray emission appears to fill this cavity. It is shown that the Carina flare represents a supershell at a distance of a few kpc that has been produced by about 20 supernova explosions, or equivalent stellar winds of OB stars, over the last ∼ 2×107 yr. The supershell consisting of molecular and atomic neutral gas involves a total mass and kinetic energy of ≳ 3×105M⊙ and ≳ 3×1050 erg, respectively, and the originally injected energy required is about 100-times this current kinetic energy in the shell. It is unique among supershells known previously because of the following aspects: i) it exhibits evidence for the triggered formation of intermediate-to-high-mass stars and massive molecular clouds of 102 − 104M⊙, and ii) the massive molecular clouds formed are located unusually far above the galactic plane at z ∼ 100–500 pc.


1991 ◽  
Vol 147 ◽  
pp. 37-40
Author(s):  
G. Joncas

The presence of HI in the interstellar medium is ubiquitous. HI is the principal actor in the majority of the physical processes at work in our Galaxy. Restricting ourselves to the topics of this symposium, atomic hydrogen is involved with the formation of molecular clouds and is one of the byproducts of their destruction by young stars. HI has different roles during a molecular cloud's life. I will discuss here a case of coexisting HI and H2 at large scale and the origin of HI in star forming regions. For completeness' sake, it should be mentionned that there are at least three other aspects of HI involvement: HI envelopes around molecular clouds, the impact of SNRs (see work on IC 443), and the role of HI in quiescent dark clouds (see van der Werf's work).


1987 ◽  
Vol 115 ◽  
pp. 499-499 ◽  
Author(s):  
P. M. Solomon

The CO Galactic Plane Survey consists of 40,572 spectral line observations in the region between 1 = 8° to 90° and b = −1°.05 to +1°.05 spaced every 3 arc minutes, carried out with the FCRAO 14-m antenna. The velocity coverage from −100 to +200 km/s includes emission from all galactic radii. This high resolution survey was designed to observe and identify essentially all molecular clouds or cloud components larger than 10 parsecs in the inner galaxy. There are two populations of molecular clouds which separate according to temperature. The warm clouds are closely associated with H II regions, exhibit a non-axisymmetric galactic distribution and are a spiral arm population. The cold clouds are a disk population, are not confined to any patterns in longitude-velocity space and must be widespread in the galaxy both in and out of spiral arms. The correlation between far infrared luminosities from IRAS, and molecular masses from CO is utilized to determine a luminosity to mass ratio for the clouds. A face-on picture of the galaxy locating the warm population is presented, showing ring like or spiral arm features at R ∼ 5, 7.5 and 9 kpc. The cloud size and mass spectrum will be discussed and evidence presented showing the presence of clusters of giant molecular clouds with masses of 106 to 107 M⊙. The two populations of clouds probably have different star forming luminosity functions. The implication of the two populations for star formation mechanisms will be discussed.


1991 ◽  
Vol 147 ◽  
pp. 37-40
Author(s):  
G. Joncas

The presence of HI in the interstellar medium is ubiquitous. HI is the principal actor in the majority of the physical processes at work in our Galaxy. Restricting ourselves to the topics of this symposium, atomic hydrogen is involved with the formation of molecular clouds and is one of the byproducts of their destruction by young stars. HI has different roles during a molecular cloud's life. I will discuss here a case of coexisting HI and H2 at large scale and the origin of HI in star forming regions. For completeness' sake, it should be mentionned that there are at least three other aspects of HI involvement: HI envelopes around molecular clouds, the impact of SNRs (see work on IC 443), and the role of HI in quiescent dark clouds (see van der Werf's work).


2018 ◽  
Vol 611 ◽  
pp. A70 ◽  
Author(s):  
Stefan Reissl ◽  
Ralf S. Klessen ◽  
Mordecai-Mark Mac Low ◽  
Eric W. Pellegrini

Aim. We aim to test the hypothesis that radiation pressure from young star clusters acting on dust is the dominant feedback agent disrupting the largest star-forming molecular clouds and thus regulating the star-formation process.Methods. We performed multi-frequency, 3D, radiative transfer calculations including both scattering and absorption and re-emission to longer wavelengths for model clouds with masses of 104–107 M⊙, containing embedded clusters with star formation efficiencies of 0.009–91%, and varying maximum grain sizes up to 200 μm. We calculated the ratio between radiative and gravitational forces to determine whether radiation pressure can disrupt clouds.Results. We find that radiation pressure acting on dust almost never disrupts star-forming clouds. Ultraviolet and optical photons from young stars to which the cloud is optically thick do not scatter much. Instead, they quickly get absorbed and re-emitted by the dust at thermal wavelengths. As the cloud is typically optically thin to far-infrared radiation, it promptly escapes, depositing little momentum in the cloud. The resulting spectrum is more narrowly peaked than the corresponding Planck function, and exhibits an extended tail at longer wavelengths. As the opacity drops significantly across the sub-mm and mm wavelength regime, the resulting radiative force is even smaller than for the corresponding single-temperature blackbody. We find that the force from radiation pressure falls below the strength of gravitational attraction by an order of magnitude or more for either Milky Way or moderate starbust conditions. Only for unrealistically large maximum grain sizes, and star formation efficiencies far exceeding 50% do we find that the strength of radiation pressure can exceed gravity.Conclusions. We conclude that radiation pressure acting on dust does not disrupt star-forming molecular clouds in any Local Group galaxies. Radiation pressure thus appears unlikely to regulate the star-formation process on either local or global scales.


2017 ◽  
Vol 839 (2) ◽  
pp. 113 ◽  
Author(s):  
R. Retes-Romero ◽  
Y. D. Mayya ◽  
A. Luna ◽  
L. Carrasco

2006 ◽  
Vol 2 (S237) ◽  
pp. 217-221
Author(s):  
Miriam Rengel ◽  
Klaus Hodapp ◽  
Jochen Eislöffel

AbstractAccording to a triggered star formation scenario (e.g. Martin-Pintado & Cernicharo 1987) outflows powered by young stellar objects shape the molecular clouds, can dig cavities, and trigger new star formation. NGC 1333 is an active site of low- and intermediate star formation in Perseus and is a suggested site of self-regulated star formation (Norman & Silk 1980). Therefore it is a suitable target for a study of triggered star formation (e.g. Sandell & Knee 2001, SK1). On the other hand, continuum sub-mm observations of star forming regions can detect dust thermal emission of embedded sources (which drive outflows), and further detailed structures.Within the framework of our wide-field mapping of star formation regions in the Perseus and Orion molecular clouds using SCUBA at 850 and 450 μm, we mapped NCG 1333 with an area of around 14′× 21′. The maps show more structure than the previous maps of the region observed in sub-mm. We have unveiled the known embedded SK 1 source (in the dust shell of the SSV 13 ridge) and detailed structure of the region, among some other young protostars.In agreement with the SK 1 observations, our map of the region shows lumpy filaments and shells/cavities that seem to be created by outflows. The measured mass of SK 1 (~0.07 M) is much less than its virial mass (~0.2-1 M). Our observations support the idea of SK 1 as an event triggered by outflow-driven shells in NGC 1333 (induced by an increase in gas pressure and density due to radiation pressure from the stellar winds that have presumably created the dust shell). This kind of evidences provides a more thorough understanding of the star formation regulation processes.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Harmeen Kaur ◽  
Saurabh Sharma ◽  
Alok K. Durgapal

NGC 6910 is located in a Cygnus X region, which is a ∼10◦ complex of actively star forming molecular clouds and young clusters, located at a distance of about 1.7 kpc (Reipurth & Schneider 2008). Open clusters possess many favorable characteristics for initial mass function (IMF) studies. The observed mass function of a star cluster can in principle be determined from the observed luminosity function (LF) using theoretical stellar evolutionary models. Here, we are presenting our initial results related to structure parameters, extinction, distance and mass function of open cluster NGC 6910 based on the deep and wide field mosaic images taken from 1.0m Sampurnand telescope of ARIES, India.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Harmeen Kaur ◽  
Saurabh Sharma ◽  
Alok K. Durgapal

NGC 6910 is located in a Cygnus X region, which is a ∼10◦ complex of actively star forming molecular clouds and young clusters, located at a distance of about 1.7 kpc (Reipurth & Schneider 2008). Open clusters possess many favorable characteristics for initial mass function (IMF) studies. The observed mass function of a star cluster can in principle be determined from the observed luminosity function (LF) using theoretical stellar evolutionary models. Here, we are presenting our initial results related to structure parameters, extinction, distance and mass function of open cluster NGC 6910 based on the deep and wide field mosaic images taken from 1.0m Sampurnand telescope of ARIES, India


Sign in / Sign up

Export Citation Format

Share Document