scholarly journals Tracing the stellar halo of an early type galaxy out to 25 effective radii

2015 ◽  
Vol 11 (S317) ◽  
pp. 9-14
Author(s):  
Marina Rejkuba

AbstractWe have used ACS and WFC3 cameras on board HST to resolve stars in the halo of NGC 5128 out to 140 kpc (25 effective radii, Reff) along the major axis and 70 kpc (13 Reff) along the minor axis. This dataset provides an unprecedented radial coverage of stellar halo properties in any galaxy. Color-magnitude diagrams clearly reveal the presence of the red giant branch stars belonging to the halo of NGC 5128 even in the most distant fields. The V-I colors of the red giants enable us to measure the metallicity distribution in each field and so map the metallicity gradient over the sampled area. The stellar metallicity follows a shallow gradient and even out at 140 kpc (25 Reff) its median value does not go below [M/H]~−1 dex. We observe significant field-to-field metallicity and stellar density variations. The star counts are higher along the major axis when compared to minor axis field located 90 kpc from the galaxy centre, indicating flattening in the outer halo. These observational results provide new important constraints for the assembly history of the halo and the formation of this gE galaxy.

2015 ◽  
Vol 11 (S317) ◽  
pp. 222-227 ◽  
Author(s):  
Antonela Monachesi ◽  
Eric F. Bell ◽  
David J. Radburn-Smith ◽  
Roelof S. de Jong ◽  
Jeremy Bailin ◽  
...  

AbstractModels of galaxy formation in a hierarchical universe predict substantial scatter in the halo-to-halo stellar properties, owing to stochasticity in galaxies' merger histories. Currently, only few detailed observations of stellar halos are available, mainly for the Milky Way and M31. We present the stellar halo color/metallicity and density profiles of red giant branch stars out to ~60 kpc along the minor axis of six massive nearby Milky Way-like galaxies beyond the Local Group from the Galaxy Halos, Outer disks, Substructure, Thick disks and Star clusters (GHOSTS) HST survey. This enlargement of the sample of galaxies with observations of stellar halo properties is needed to understand the range of possible halo properties, i.e. not only the mean properties but also the halo-to-halo scatter, what a ‘typical’ halo looks like, and how similar the Milky Way halo is to other halos beyond the Local Group.


2018 ◽  
Vol 614 ◽  
pp. A144 ◽  
Author(s):  
R. Stonkutė ◽  
M. Čeponis ◽  
A. Leščinskaitė ◽  
R. Naujalis ◽  
V. Vansevičius

Context. Leo A is an isolated gas-rich dwarf irregular galaxy of low stellar mass and metallicity residing at the outskirts of the Local Group. Ages of the stellar populations in Leo A range from ~10 Myr to ~10 Gyr. A large stellar halo (up to the deprojected distance of ~1.7 kpc) was discovered based on Subaru wide-field photometry of red giant branch stars. Aims. We aim to study stellar populations at the very outer region of the Leo A galaxy. Methods. We analysed HST WFC3 archive observation data in the field that is partly located beyond the previously known limits of the Leo A galaxy. We performed photometry of star-like objects in the F475W and F814W passbands and studied the spatial distribution of the Leo A stars below the horizontal branch. Results. We report a discovery of stellar halo populations (subgiants and faint red giants) in the Leo A galaxy extending up to ~2.3 kpc deprojected distance from the galaxy centre. Analysis of the colour-magnitude diagram suggests old (>5 Gyr) stellar populations of very low metallicity (Z ~ 0.0001).


2020 ◽  
Vol 492 (3) ◽  
pp. 3631-3646 ◽  
Author(s):  
J Ted Mackereth ◽  
Jo Bovy

ABSTRACT The stellar mass in the halo of the Milky Way is notoriously difficult to determine, owing to the paucity of its stars in the solar neighbourhood. With tentative evidence from Gaia that the nearby stellar halo is dominated by a massive accretion event – referred to as Gaia-Enceladus or Sausage – these constraints are now increasingly urgent. We measure the mass in kinematically selected mono-abundance populations (MAPs) of the stellar halo between −3 < [Fe/H] < −1 and 0.0 < [Mg/Fe] < 0.4 using red giant star counts from APOGEE DR14. We find that MAPs are well fit by single power laws on triaxial ellipsoidal surfaces, and we show that that the power-law slope α changes such that high [Mg/Fe] populations have α ∼ 4, whereas low [Mg/Fe] MAPs are more extended with shallow slopes, α ∼ 2. We estimate the total stellar mass to be $M_{*,\mathrm{tot}} = 1.3^{+0.3}_{-0.2}\times 10^{9}\ \mathrm{M_{\odot}}$, of which we estimate ${\sim}0.9^{+0.2}_{-0.1} \times 10^{9}\ \mathrm{M_{\odot}}$ to be accreted. We estimate that the mass of accreted stars with e > 0.7 is M*,accreted, e > 0.7 = 3 ± 1 (stat.) ± 1 (syst.) × 108 M⊙, or ${\sim}30{-}50{{\ \rm per\ cent}}$ of the accreted halo mass. If the majority of these stars are the progeny of a massive accreted dwarf, this places an upper limit on its stellar mass, and implies a halo mass for the progenitor of ∼1010.2 ± 0.2 M⊙. This constraint not only shows that the Gaia-Enceladus/Sausage progenitor may not be as massive as originally suggested, but that the majority of the Milky Way stellar halo was accreted. These measurements are an important step towards fully reconstructing the assembly history of the Milky Way.


2019 ◽  
Vol 631 ◽  
pp. A171 ◽  
Author(s):  
Á. Skúladóttir ◽  
C. J. Hansen ◽  
S. Salvadori ◽  
A. Choplin

The heavy elements (Z >  30) are created in neutron (n)-capture processes that are predicted to happen at vastly different nucleosynthetic sites. To study these processes in an environment different from the Milky Way, we targeted the n-capture elements in red giant branch stars in the Sculptor dwarf spheroidal galaxy. Using ESO VLT/FLAMES spectra, we measured the chemical abundances of Y, Ba, La, Nd, and Eu in 98 stars covering the metalliticy range −2.4 < [Fe/H] < −0.9. This is the first paper in a series about the n-capture elements in dwarf galaxies, and here we focus on the relative and absolute timescales of the slow (s)- and rapid (r)-processes in Sculptor. From the abundances of the s-process element Ba and the r-process element Eu, it is clear that the r-process enrichment occurred throughout the entire chemical evolution history of Sculptor. Furthermore, there is no evidence for the r-process to be significantly delayed in time relative to core-collapse supernovae. Neutron star mergers are therefore unlikely the dominant (or only) nucleosynthetic site of the r-process. However, the products of the s-process only become apparent at [Fe/H] ≈ −2 in Sculptor, and the s-process becomes the dominant source of Ba at [Fe/H] ≳ −2. We tested the use of [Y/Mg] and [Ba/Mg] as chemical clocks in Sculptor. Similarly to what is observed in the Milky Way, [Y/Mg] and [Ba/Mg] increase towards younger ages. However, there is an offset in the trends, where the abundance ratios of [Y/Mg] in Sculptor are significantly lower than those of the Milky Way at any given age. This is most likely caused by metallicity dependence of yields from the s-process, as well as by a different relative contribution of the s-process to core-collapse supernovae in these galaxies. Comparisons of our results with data of the Milky Way and the Fornax dwarf spheroidal galaxy furthermore show that these chemical clocks depend on both metallicity and environment.


1978 ◽  
Vol 80 ◽  
pp. 273-276
Author(s):  
Sidney van den Bergh

A quarter of a century ago Keenan and Keller (1953) showed that the majority of high-velocity stars near the Sun outline a Hertzsprung-Russell diagram similar to that of old Population I. This result, which did not appear to fit into Baade's (1944) two-population model of the Galaxy was ignored (except by Roman 1965) for the next two decades. Striking confirmation of the results of Keenan and Keller was, however, obtained by Hartwick and Hesser (1972). Their work appears to show that high-velocity field stars with an ultraviolet excess (which measures Fe/H) of δ(U-B) ≃ +0m.11 lie on a red giant branch that is more than a magnitude fainter than the giant branch of the strong-lined globular cluster 47 Tuc for which δ(U-B) ≃ +0m.10. Furthermore Demarque and McClure (1977) show that the red giants in the old metal poor [δ(U-B) ≃ +0m.11] open cluster NGC 2420 are significantly fainter than are those in 47 Tuc. Calculations by these authors show that the observed differences between the giants in 47 Tuc and in NGC 2420 can be explained if either (1) 47 Tuc is richer in helium than NGC 2420 by ΔY ≃ 0.1 or (2) if 47 Tuc has a ten times lower value of Z(CNO) than does NGC 2420.


1996 ◽  
Vol 171 ◽  
pp. 411-411
Author(s):  
A. Mathieu ◽  
H. Dejonghe ◽  
X. Hui

We use planetary nebulae observations (Hui et al. 1995) to build dynamical models of the dust-lane elliptical galaxy NGC 5128 (Centaurus A). The PN photometric and kinematical data extend out to 20 kpc (∼ 4re) along the major axis and 10 kpc along the minor axis. Our models are built using a Quadratic Programming technique (Dejonghe 1989). The method produces fits to the data set, which consists of the photometry field (E2, well fitted by a r1/4-law) together with the major- and minor- axis rotation curves and velocity dispersion profiles. Assuming the merger hypothesis for Cen A, we describe its kinematics in a spherical potential by two sub-systems, one rotating about the intrinsic short axis and the other about the intrinsic long axis of the galaxy.


2009 ◽  
Vol 5 (S268) ◽  
pp. 301-309
Author(s):  
Verne V. Smith

AbstractConnections between observations of the lithium abundance in various types of red giants and stellar evolution are discussed here. The emphasis is on three main topics; 1) the depletion of Li as stars ascend the red giant branch for the first time, 2) the synthesis of 7Li in luminous and massive asymptotic giant branch stars via the mechanism of hot-bottom burning, and 3) the possible multiple sources of excess Li abundances found in a tiny fraction of various types of G and K giants.


2021 ◽  
Vol 923 (1) ◽  
pp. 92
Author(s):  
Rohan P. Naidu ◽  
Charlie Conroy ◽  
Ana Bonaca ◽  
Dennis Zaritsky ◽  
Rainer Weinberger ◽  
...  

Abstract Several lines of evidence suggest that the Milky Way underwent a major merger at z ∼ 2 with the Gaia-Sausage-Enceladus (GSE) galaxy. Here we use H3 Survey data to argue that GSE entered the Galaxy on a retrograde orbit based on a population of highly retrograde stars with chemistry similar to the largely radial GSE debris. We present the first tailored N-body simulations of the merger. From a grid of ≈500 simulations we find that a GSE with M ⋆ = 5 × 108 M ⊙, M DM = 2 × 1011 M ⊙ best matches the H3 data. This simulation shows that the retrograde stars are stripped from GSE’s outer disk early in the merger. Despite being selected purely on angular momenta and radial distributions, this simulation reproduces and explains the following phenomena: (i) the triaxial shape of the inner halo, whose major axis is at ≈35° to the plane and connects GSE’s apocenters; (ii) the Hercules-Aquila Cloud and the Virgo Overdensity, which arise due to apocenter pileup; and (iii) the 2 Gyr lag between the quenching of GSE and the truncation of the age distribution of the in situ halo, which tracks the lag between the first and final GSE pericenters. We make the following predictions: (i) the inner halo has a “double-break” density profile with breaks at both ≈15–18 kpc and 30 kpc, coincident with the GSE apocenters; and (ii) the outer halo has retrograde streams awaiting discovery at >30 kpc that contain ≈10% of GSE’s stars. The retrograde (radial) GSE debris originates from its outer (inner) disk—exploiting this trend, we reconstruct the stellar metallicity gradient of GSE (−0.04 ± 0.01 dex r 50 − 1 ). These simulations imply that GSE delivered ≈20% of the Milky Way’s present-day dark matter and ≈50% of its stellar halo.


2020 ◽  
Vol 639 ◽  
pp. A63
Author(s):  
Patrick Gaulme ◽  
Jason Jackiewicz ◽  
Federico Spada ◽  
Drew Chojnowski ◽  
Benoît Mosser ◽  
...  

Oscillating red-giant stars have provided a wealth of asteroseismic information regarding their interiors and evolutionary states, which enables detailed studies of the Milky Way. The objective of this work is to determine what fraction of red-giant stars shows photometric rotational modulation, and understand its origin. One of the underlying questions is the role of close binarity in this population, which relies on the fact that red giants in short-period binary systems (less than 150 days or so) have been observed to display strong rotational modulation. We selected a sample of about 4500 relatively bright red giants observed by Kepler, and show that about 370 of them (∼8%) display rotational modulation. Almost all have oscillation amplitudes below the median of the sample, while 30 of them are not oscillating at all. Of the 85 of these red giants with rotational modulation chosen for follow-up radial-velocity observation and analysis, 34 show clear evidence of spectroscopic binarity. Surprisingly, 26 of the 30 nonoscillators are in this group of binaries. On the contrary, about 85% of the active red giants with detectable oscillations are not part of close binaries. With the help of the stellar masses and evolutionary states computed from the oscillation properties, we shed light on the origin of their activity. It appears that low-mass red-giant branch stars tend to be magnetically inactive, while intermediate-mass ones tend to be highly active. The opposite trends are true for helium-core burning (red clump) stars, whereby the lower-mass clump stars are comparatively more active and the higher-mass ones are less active. In other words, we find that low-mass red-giant branch stars gain angular momentum as they evolve to clump stars, while higher-mass ones lose angular momentum. The trend observed with low-mass stars leads to possible scenarios of planet engulfment or other merging events during the shell-burning phase. Regarding intermediate-mass stars, the rotation periods that we measured are long with respect to theoretical expectations reported in the literature, which reinforces the existence of an unidentified sink of angular momentum after the main sequence. This article establishes strong links between rotational modulation, tidal interactions, (surface) magnetic fields, and oscillation suppression. There is a wealth of physics to be studied in these targets that is not available in the Sun.


1995 ◽  
Vol 164 ◽  
pp. 446-446
Author(s):  
A. Pizzella ◽  
R. Morganti ◽  
M.E. Sadler ◽  
F. Bertola

Recent observations with the Australia Telescope reveal that the elliptical galaxy NGC 5266 has a disk like structure of neutral hydrogen extending as far as almost 10 Re which approximatively lies along the galaxy's major axis, at 65° apart from the inner minor–axis dust lane (Varnas et al 1987). From the present data is not clear whether the HI structure and the dust lane are two distinct disks or a single warped structure. The regularity of the velocity field of the HI structure allow us to use it as a probe of the potential of NGC 5266. The velocity curve along the major axis is flat till the last measured point (rmax ~ 10′) at Vrot = 200km/s. Assuming that the gas in moving in circular orbits, we can derive the mass of the galaxy inside to this radius. The mass–to–light ratio M/LB rises from about 3 in the central regions to 12 at 9 Re (D = 57.6 Mpc), thus indicating that NGC 5266 is embedded in a dark massive halo. Moreover the representative point (cumulative M/LB within the last measured point) of NGC 5266 in the diagram log(M/LB) – log(Re) falls well within the region characteristic of spiral galaxies (Figure 2, Bertola et al. 1993), as do ellipticals previously studied in HI, thus reinforcing the suggestion (Bertola et al. 1993) of a parallel behaviour of the dark matter in elliptical and spiral galaxies.


Sign in / Sign up

Export Citation Format

Share Document