scholarly journals Massive Black Holes in Merging Galaxies

2015 ◽  
Vol 11 (A29B) ◽  
pp. 285-291 ◽  
Author(s):  
Marta Volonteri ◽  
Tamara Bogdanović ◽  
Massimo Dotti ◽  
Monica Colpi

AbstractThe dynamics of massive black holes (BHs) in galaxy mergers is a rich field of research that has seen much progress in recent years. In this contribution we briefly review the processes describing the journey of BHs during mergers, from the cosmic context all the way to when BHs coalesce. If two galaxies each hosting a central BH merge, the BHs would be dragged towards the center of the newly formed galaxy. If/when the holes get sufficiently close, they coalesce via the emission of gravitational waves. How often two BHs are involved in galaxy mergers depends crucially on how many galaxies host BHs and on the galaxy merger history. It is therefore necessary to start with full cosmological models including BH physics and a careful dynamical treatment. After galaxies have merged, however, the BHs still have a long journey until they touch and coalesce. Their dynamical evolution is radically different in gas-rich and gas-poor galaxies, leading to a sort of “dichotomy” between high-redshift and low-redshift galaxies, and late-type and early-type, typically more massive galaxies.

2009 ◽  
Vol 5 (S267) ◽  
pp. 3-14 ◽  
Author(s):  
Timothy M. Heckman

AbstractI begin by summarizing the evidence that there is a close relationship between the evolution of galaxies and supermassive black holes. They evidently share a common fuel source, and feedback from the black hole may be needed to suppress over-cooling in massive galaxies. I then review what we know about the co-evolution of galaxies and black holes in the modern universe (z < 1). We now have a good documentation of which black holes are growing (the lower mass ones), where they are growing (in the less massive early-type galaxies), and how this growth is related in a statistical sense to star formation in the central region of the galaxy. The opportunity in the next decade will be to use the new observatories to undertake ambitious programs of 3-D imaging spectroscopy of the stars and gas in order to understand the actual astrophysical processes that produce the demographics we observe. At high redshift (z > 2), the most massive black holes and the progenitors of the most massive galaxies are forming. Here, we currently have a tantalizing but fragmented view of their co-evolution. In the next decade, the huge increase in sensitivity and discovery power of our observatories will enable us to analyze the large, complete samples we need to achieve robust and clear results.


2020 ◽  
Vol 497 (4) ◽  
pp. 5292-5308 ◽  
Author(s):  
Paul Torrey ◽  
Philip F Hopkins ◽  
Claude-André Faucher-Giguère ◽  
Daniel Anglés-Alcázar ◽  
Eliot Quataert ◽  
...  

ABSTRACT Accreting black holes can drive fast and energetic nuclear winds that may be an important feedback mechanism associated with active galactic nuclei (AGN). In this paper, we implement a scheme for capturing feedback from these fast nuclear winds and examine their impact in simulations of isolated disc galaxies. Stellar feedback is modelled using the Feedback In Realistic Environments (fire) physics and produces a realistic multiphase interstellar medium (ISM). We find that AGN winds drive the formation of a low-density, high-temperature central gas cavity that is broadly consistent with analytic model expectations. The effects of AGN feedback on the host galaxy are a strong function of the wind kinetic power and momentum. Low- and moderate-luminosity AGN do not have a significant effect on their host galaxy: the AGN winds inefficiently couple to the ambient ISM and instead a significant fraction of their energy vents in the polar direction. For such massive black holes, accretion near the Eddington limit can have a dramatic impact on the host galaxy ISM: if AGN wind feedback acts for ≳20–30 Myr, the inner ∼1–10 kpc of the ISM is disrupted and the global galaxy star formation rate is significantly reduced. We quantify the properties of the resulting galaxy-scale outflows and find that the radial momentum in the outflow is boosted by a factor of ∼2–3 relative to that initially supplied in the AGN wind for strong feedback scenarios, decreasing below unity for less energetic winds. In contrast to observations, however, the outflows are primarily hot, with very little atomic or molecular gas. We conjecture that merging galaxies and high-redshift galaxies, which have more turbulent and thicker discs and very different nuclear gas geometries, may be even more disrupted by AGN winds than found in our simulations.


2013 ◽  
Vol 9 (S304) ◽  
pp. 23-23
Author(s):  
Amy Reines ◽  
J. Greene ◽  
M. Geha

AbstractSupermassive black holes (BHs) live at the heart of essentially all massive galaxies with bulges, power AGN, and are thought to be important agents in the evolution of their hosts. Observations of high-redshift quasars demonstrate that supermassive BHs must start out with masses considerably in excess of normal stellar-mass BHs. However, we do not know how the initial “seed” BHs formed in the early Universe, how massive they were originally, or what types of galaxies they formed in. While direct observations of distant seed BHs and their hosts in the infant Universe are unobtainable with current capabilities, models of BH growth in a cosmological context indicate that present-day dwarf galaxies can place valuable constraints on seed masses and distinguish between various seed formation mechanisms at early times. Using optical spectroscopy from the SDSS, we have systematically assembled the largest sample of dwarf galaxies hosting AGN to date. These dwarf galaxies have stellar masses comparable to the Magellanic Clouds and contain some of the least-massive supermassive BHs known. I will present results from this study and discuss our ongoing efforts to find additional examples of AGN in dwarfs and help constrain theories for the formation of the first seed BHs at high redshift.


2006 ◽  
Vol 2 (S235) ◽  
pp. 381-384 ◽  
Author(s):  
Christopher J. Conselice

AbstractIn this review we discuss the evidence for galaxy interactions and mergers in the distant universe and the role of mergers in forming galaxies. Observations show that the fraction of massive (M>M*) galaxies involved in major mergers is roughly 5–10% at z ~ 1. The merger fraction however increases steeply for the most massive galaxies up to z ~ 3, where the merger fraction is 50± 20%. Using N-body models of the galaxy merger process at a variety of merger conditions, merger mass ratios, and viewing angles this merger fraction can be converted into a merger rate, and mass accretion rate due to mergers. A simple integration of the merger rate shows that a typical massive galaxy at z ~ 3 will undergo 4–5 major mergers between z ~ 3 and z ~ 0, with most of this activity, and resulting mass assembly, occurring at z>1.5.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 292-298 ◽  
Author(s):  
S. Komossa ◽  
J. G. Baker ◽  
F. K. Liu

AbstractThe study of galaxy mergers and supermassive binary black holes (SMBBHs) is central to our understanding of the galaxy and black hole assembly and (co-)evolution at the epoch of structure formation and throughout cosmic history. Galaxy mergers are the sites of major accretion episodes, they power quasars, grow supermassive black holes (SMBHs), and drive SMBH-host scaling relations. The coalescing SMBBHs at their centers are the loudest sources of gravitational waves (GWs) in the Universe, and the subsequent GW recoil has a variety of potential astrophysical implications which are still under exploration. Future GW astronomy will open a completely new window on structure formation and galaxy mergers, including the direct detection of coalescing SMBBHs, high-precision measurements of their masses and spins, and constraints on BH formation and evolution in the high-redshift Universe.


2012 ◽  
Vol 8 (S295) ◽  
pp. 257-260
Author(s):  
Christine Jones ◽  
William Forman ◽  
Akos Bogdan ◽  
Scott Randall ◽  
Ralph Kraft ◽  
...  

AbstractMassive galaxies harbor a supermassive black hole at their centers. At high redshifts, these galaxies experienced a very active quasar phase, when, as their black holes grew by accretion, they produced enormous amounts of energy. At the present epoch, these black holes still undergo occasional outbursts, although the mode of their energy release is primarily mechanical rather than radiative. The energy from these outbursts can reheat the cooling gas in the galaxy cores and maintain the red and dead nature of the early-type galaxies. These outbursts also can have dramatic effects on the galaxy-scale hot coronae found in the more massive galaxies. We describe research in three areas related to the hot gas around galaxies and their supermassive black holes. First we present examples of galaxies with AGN outbursts that have been studied in detail. Second, we show that X-ray emitting low-luminosity AGN are present in 80% of the galaxies studied. Third, we discuss the first examples of extensive hot gas and dark matter halos in optically faint galaxies.


1987 ◽  
Vol 117 ◽  
pp. 112-112
Author(s):  
D. Gerbal ◽  
G. Mathez ◽  
A. Mazure ◽  
E. Salvadore-Solé

The study of the dynamics of the Coma Cluster is of interest for several reasons. First, there exists a great deal of observational information about the cluster, including data on morphology, magnitude, color and redshift for the galaxies, and reasonably detailed x-ray data for the hot gas. Second, the present dynamical state of the cluster is reasonably well-defined. In addition, the segregation of the more luminous (≡ massive) galaxies towards the cluster center shows that two-body relaxation effects are well-advanced (Capelato et al. 1980). The profile of velocity dispersion with radius shows that in the outer parts of the cluster the galaxy velocities are non-isothermal (des Forêts et al. 1984). There is, however, evidence of continuing dynamical evolution. The velocity field of the galaxies at large distances from the center of the cluster suggests continuing infall (Capelato et al. 1982), and two sub-condensations are located in the inner regions (Mazure and Proust 1986). A new dynamical analysis for the cluster is being carried out in two stages. First, a relaxed model with a wide mass spectrum (c.f. Inagaki 1980) is fitted to the data. The contribution of the intergalactic gas is taken into account. With HO = 75 km/sec/Mpc, the total mass within a 3° radius of the center is ∼ 1.5 × 1015 M⊙, of which ∼ 30% is in the intergalactic medium, and M/L ∼ 75 M⊙/L⊙. The ratio of specific energies of the galaxies and the gas is ∼ 1.1, i.e., there is no scale-height problem (these results are described more fully by Gerbal et al. 1986). A second “model independent” analysis using the profiles of the galactic density and velocity dispersion gives the radial dependence of the galactic mass, the gas mass and also gives the total mass, which is found to be ∼ 1.1 × 1015 M⊙ within 3° (Gerbal et al. 1984).


2019 ◽  
Vol 488 (2) ◽  
pp. 1941-1959 ◽  
Author(s):  
Madeline A Marshall ◽  
Simon J Mutch ◽  
Yuxiang Qin ◽  
Gregory B Poole ◽  
J Stuart B Wyithe

Abstract We study the sizes, angular momenta, and morphologies of high-redshift galaxies, using an update of the meraxes semi-analytic galaxy evolution model. Our model successfully reproduces a range of observations from redshifts z = 0–10. We find that the effective radius of a galaxy disc scales with ultraviolet (UV) luminosity as $R_\mathrm{ e}\propto L_{\textrm{UV}}^{0.33}$ at z = 5–10, and with stellar mass as $R_e\propto M_\ast ^{0.24}$ at z = 5 but with a slope that increases at higher redshifts. Our model predicts that the median galaxy size scales with redshift as Re ∝ (1 + z)−m, where m = 1.98 ± 0.07 for galaxies with (0.3–1)$L^\ast _{z=3}$ and m = 2.15 ± 0.05 for galaxies with (0.12–0.3)$L^\ast _{z=3}$. We find that the ratio between stellar and halo specific angular momentum is typically less than 1 and decreases with halo and stellar mass. This relation shows no redshift dependence, while the relation between specific angular momentum and stellar mass decreases by ∼0.5 dex from z = 7 to z = 2. Our model reproduces the distribution of local galaxy morphologies, with bulges formed predominantly through galaxy mergers for low-mass galaxies, disc-instabilities for galaxies with M* ≃ 1010–$10^{11.5}\, \mathrm{M}_\odot$, and major mergers for the most massive galaxies. At high redshifts, we find galaxy morphologies that are predominantly bulge-dominated.


2020 ◽  
Vol 498 (3) ◽  
pp. 3807-3816
Author(s):  
Charles Zivancev ◽  
Jeremiah Ostriker ◽  
Andreas H W Küpper

ABSTRACT We perform N-body simulations on some of the most massive galaxies extracted from a cosmological simulation of hierarchical structure formation with total masses in the range 1012 M⊙ &lt; Mtot &lt; 3 × 1013 M⊙ from 4 ≥ z ≥ 0. After galactic mergers, we track the dynamical evolution of the infalling black holes (BHs) around their host’s central BHs (CBHs). From 11 different simulations, we find that, of the 86 infalling BHs with masses &gt;104 M⊙, 36 merge with their host’s CBH, 13 are ejected from their host galaxy, and 37 are still orbiting at z = 0. Across all galaxies, 33 BHs are kicked to a higher orbit after close interactions with the CBH binary or multiple, after which only one of them merged with their hosts. These orbiting BHs should be detectable by their anomalous (not low-mass X-ray binary) spectra. The X-ray luminosities of the orbiting massive BHs at z = 0 are in the range $10^{28}-10^{43}\, \mathrm{erg}~\mathrm{s}^{-1}$, with a currently undetectable median value of $10^{33}\, \mathrm{erg}~\mathrm{s}^{-1}$. However, the most luminous ∼5 per cent should be detectable by existing X-ray facilities.


2007 ◽  
Author(s):  
M. Colpi ◽  
S. Callegari ◽  
M. Dotti ◽  
S. Kazantzidis ◽  
L. Mayer

Sign in / Sign up

Export Citation Format

Share Document