scholarly journals Galaxy Mergers and Interactions at High Redshift

2006 ◽  
Vol 2 (S235) ◽  
pp. 381-384 ◽  
Author(s):  
Christopher J. Conselice

AbstractIn this review we discuss the evidence for galaxy interactions and mergers in the distant universe and the role of mergers in forming galaxies. Observations show that the fraction of massive (M>M*) galaxies involved in major mergers is roughly 5–10% at z ~ 1. The merger fraction however increases steeply for the most massive galaxies up to z ~ 3, where the merger fraction is 50± 20%. Using N-body models of the galaxy merger process at a variety of merger conditions, merger mass ratios, and viewing angles this merger fraction can be converted into a merger rate, and mass accretion rate due to mergers. A simple integration of the merger rate shows that a typical massive galaxy at z ~ 3 will undergo 4–5 major mergers between z ~ 3 and z ~ 0, with most of this activity, and resulting mass assembly, occurring at z>1.5.

2015 ◽  
Vol 11 (A29B) ◽  
pp. 306-308
Author(s):  
Allison W. S. Man

AbstractThe role of galaxy mergers in the evolution of massive galaxies remains debated. While deep near-infrared surveys have enabled several independent merger rate measurements out to z~3, they are limited to small samples and results are discrepant at z=2–3. In Man et al., we use the UltraVISTA and CANDELS surveys to obtain the largest sample of photometric galaxy pairs at z>1 for measuring the galaxy merger fraction and rate of massive galaxies. We find that the discrepancy of previous studies is due to selection effect. Defining galaxy pairs by stellar mass ratio leads to a flat z-evolution of the merger fraction, while defining by flux ratio leads to an increasing trend. The implications on the evolution of massive galaxies are summarized here.


2020 ◽  
Vol 637 ◽  
pp. A94 ◽  
Author(s):  
F. Gao ◽  
L. Wang ◽  
W. J. Pearson ◽  
Y. A. Gordon ◽  
B. W. Holwerda ◽  
...  

Aims. The fueling and feedback of active galactic nuclei (AGNs) are important for understanding the co-evolution between black holes and host galaxies. Mergers are thought to have the capability to bring gas inward and ignite nuclear activity, especially for more powerful AGNs. However, there is still significant ongoing debate on whether mergers can trigger AGNs and, if they do, whether mergers are a significant triggering mechanism. Methods. We selected a low-redshift (0.005 <  z <  0.1) sample from the Sloan Digital Sky Survey and a high-redshift (0 <  z <  0.6) sample from the Galaxy And Mass Assembly survey. We took advantage of the convolutional neural network technique to identify mergers. We used mid-infrared (MIR) color cut and optical emission line diagnostics to classify AGNs. We also included low excitation radio galaxies (LERGs) to investigate the connection between mergers and low accretion rate AGNs. Results. We find that AGNs are more likely to be found in mergers than non-mergers, with an AGN excess up to 1.81 ± 0.16, suggesting that mergers can trigger AGNs. We also find that the fraction of mergers in AGNs is higher than that in non-AGN controls, for both MIR and optically selected AGNs, as well as LERGs, with values between 16.40 ± 0.5% and 39.23 ± 2.10%, implying a non-negligible to potentially significant role of mergers in triggering AGNs. This merger fraction in AGNs increases as stellar mass increases, which supports the idea that mergers are more important for triggering AGNs in more massive galaxies. In terms of merger fraction as a function of AGN power we find a positive trend for MIR selected AGNs and a complex trend for optically selected AGNs, which we interpret under an evolutionary scenario proposed by previous studies. In addition, obscured MIR selected AGNs are more likely to be hosted in mergers than unobscured MIR selected AGNs.


2012 ◽  
Vol 8 (S295) ◽  
pp. 58-58
Author(s):  
S. Foucaud ◽  
P.-W. Wang ◽  
O. Almaini ◽  
R. Grützbauch ◽  
W. G. Hartley ◽  
...  

AbstractIt is now clear that the epoch when the Universe was half of its current age is a crucial period during which galaxies assembled their mass and evolved into the galaxies we observe in the local Universe. However, so far only very few direct studies of mass assembly in action, hence galaxy merging, were conducted over z=1 and usually relied on very small or biased samples. Based on very deep near infrared survey data, the latest UKIDSS-UDS DR8, combined with the optical data conducted by Subaru and CFHT and Spitzer IRAC observations, we explored the evolution of the merging rate up to z = 2, over the largest volume of the Universe at 0.4<z<2 ever sampled. The pair fraction is found to decrease by a factor of two during this period, and wet (gas rich) mergers dominate largely. The dry mergers are very rare, ruling it out as the main mechanism for the mass assembly of passive massive galaxies. Also while massive galaxies undergo a decrease of their pair fraction during this period, less massive systems follow an increase during the same period.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 285-291 ◽  
Author(s):  
Marta Volonteri ◽  
Tamara Bogdanović ◽  
Massimo Dotti ◽  
Monica Colpi

AbstractThe dynamics of massive black holes (BHs) in galaxy mergers is a rich field of research that has seen much progress in recent years. In this contribution we briefly review the processes describing the journey of BHs during mergers, from the cosmic context all the way to when BHs coalesce. If two galaxies each hosting a central BH merge, the BHs would be dragged towards the center of the newly formed galaxy. If/when the holes get sufficiently close, they coalesce via the emission of gravitational waves. How often two BHs are involved in galaxy mergers depends crucially on how many galaxies host BHs and on the galaxy merger history. It is therefore necessary to start with full cosmological models including BH physics and a careful dynamical treatment. After galaxies have merged, however, the BHs still have a long journey until they touch and coalesce. Their dynamical evolution is radically different in gas-rich and gas-poor galaxies, leading to a sort of “dichotomy” between high-redshift and low-redshift galaxies, and late-type and early-type, typically more massive galaxies.


Author(s):  
Joseph A O’Leary ◽  
Benjamin P Moster ◽  
Thorsten Naab ◽  
Rachel S Somerville

Abstract We explore the galaxy-galaxy merger rate with the empirical model for galaxy formation, emerge. On average, we find that between 2 per cent and 20 per cent of massive galaxies (log10(m*/M⊙) ≥ 10.3) will experience a major merger per Gyr. Our model predicts galaxy merger rates that do not scale as a power-law with redshift when selected by descendant stellar mass, and exhibit a clear stellar mass and mass-ratio dependence. Specifically, major mergers are more frequent at high masses and at low redshift. We show mergers are significant for the stellar mass growth of galaxies log10(m*/M⊙) ≳ 11.0. For the most massive galaxies major mergers dominate the accreted mass fraction, contributing as much as 90 per cent of the total accreted stellar mass. We reinforce that these phenomena are a direct result of the stellar-to-halo mass relation, which results in massive galaxies having a higher likelihood of experiencing major mergers than low mass galaxies. Our model produces a galaxy pair fraction consistent with recent observations, exhibiting a form best described by a power-law exponential function. Translating these pair fractions into merger rates results in an inaccurate prediction compared to the model intrinsic values when using published observation timescales. We find the pair fraction can be well mapped to the intrinsic merger rate by adopting an observation timescale that decreases linearly with redshift as Tobs = −0.36(1 + z) + 2.39 [Gyr], assuming all observed pairs merge by z = 0.


2010 ◽  
Vol 6 (S272) ◽  
pp. 233-241
Author(s):  
Christopher J. Evans

AbstractOne of the challenges for stellar astrophysics is to reach the point at which we can undertake reliable spectral synthesis of unresolved populations in young, star-forming galaxies at high redshift. Here I summarise recent studies of massive stars in the Galaxy and Magellanic Clouds, which span a range of metallicities commensurate with those in high-redshift systems, thus providing an excellent laboratory in which to study the role of environment on stellar evolution. I also give an overview of observations of luminous supergiants in external galaxies out to a remarkable 6.7 Mpc, in which we can exploit our understanding of stellar evolution to study the chemistry and dynamics of the host systems.


2019 ◽  
Vol 488 (2) ◽  
pp. 1941-1959 ◽  
Author(s):  
Madeline A Marshall ◽  
Simon J Mutch ◽  
Yuxiang Qin ◽  
Gregory B Poole ◽  
J Stuart B Wyithe

Abstract We study the sizes, angular momenta, and morphologies of high-redshift galaxies, using an update of the meraxes semi-analytic galaxy evolution model. Our model successfully reproduces a range of observations from redshifts z = 0–10. We find that the effective radius of a galaxy disc scales with ultraviolet (UV) luminosity as $R_\mathrm{ e}\propto L_{\textrm{UV}}^{0.33}$ at z = 5–10, and with stellar mass as $R_e\propto M_\ast ^{0.24}$ at z = 5 but with a slope that increases at higher redshifts. Our model predicts that the median galaxy size scales with redshift as Re ∝ (1 + z)−m, where m = 1.98 ± 0.07 for galaxies with (0.3–1)$L^\ast _{z=3}$ and m = 2.15 ± 0.05 for galaxies with (0.12–0.3)$L^\ast _{z=3}$. We find that the ratio between stellar and halo specific angular momentum is typically less than 1 and decreases with halo and stellar mass. This relation shows no redshift dependence, while the relation between specific angular momentum and stellar mass decreases by ∼0.5 dex from z = 7 to z = 2. Our model reproduces the distribution of local galaxy morphologies, with bulges formed predominantly through galaxy mergers for low-mass galaxies, disc-instabilities for galaxies with M* ≃ 1010–$10^{11.5}\, \mathrm{M}_\odot$, and major mergers for the most massive galaxies. At high redshifts, we find galaxy morphologies that are predominantly bulge-dominated.


2020 ◽  
Vol 496 (3) ◽  
pp. 3169-3181
Author(s):  
Makoto Ando ◽  
Kazuhiro Shimasaku ◽  
Rieko Momose

ABSTRACT A proto-cluster core is the most massive dark matter halo (DMH) in a given proto-cluster. To reveal the galaxy formation in core regions, we search for proto-cluster cores at z ∼ 2 in ${\sim}1.5\, \mathrm{deg}^{2}$ of the COSMOS field. Using pairs of massive galaxies [log (M*/M⊙) ≥ 11] as tracers of cores, we find 75 candidate cores, among which 54 per cent are estimated to be real. A clustering analysis finds that these cores have an average DMH mass of $2.6_{-0.8}^{+0.9}\times 10^{13}\, \mathrm{M}_{\odot }$, or $4.0_{-1.5}^{+1.8}\, \times 10^{13} \, \mathrm{M}_{\odot }$ after contamination correction. The extended Press–Schechter model shows that their descendant mass at z = 0 is consistent with Fornax-like or Virgo-like clusters. Moreover, using the IllustrisTNG simulation, we confirm that pairs of massive galaxies are good tracers of DMHs massive enough to be regarded as proto-cluster cores. We then derive the stellar mass function (SMF) and the quiescent fraction for member galaxies of the 75 candidate cores. We find that the core galaxies have a more top-heavy SMF than field galaxies at the same redshift, showing an excess at log (M*/M⊙) ≳ 10.5. The quiescent fraction, $0.17_{-0.04}^{+0.04}$ in the mass range 9.0 ≤ log (M*/M⊙) ≤ 11.0, is about three times higher than that of field counterparts, giving an environmental quenching efficiency of $0.13_{-0.04}^{+0.04}$. These results suggest that stellar mass assembly and quenching are accelerated as early as z ∼ 2 in proto-cluster cores.


2012 ◽  
Vol 8 (S295) ◽  
pp. 45-48
Author(s):  
C. J. Conselice ◽  
Jamie Ownsworth ◽  
Alice Mortlock ◽  
Asa F. L. Bluck ◽  

AbstractGalaxy assembly is an unsolved problem, with ΛCDM theoretical models unable to easily account for among other things, the abundances of massive galaxies, and the observed merger history. We show here how the problem of galaxy formation can be addressed in an empirical way without recourse to models. We discuss how galaxy assembly occurs at 1.5 < z < 3 examining the role of major and minor mergers, and gas accretion from the intergalactic medium in forming massive galaxies with log M* > 11 found within the GOODS NICMOS Survey (GNS). We find that major mergers, minor mergers and gas accretion are roughly equally important in the galaxy formation process during this epoch, with 64% of the mass assembled through merging and 36% through accreted gas which is later converted to stars, while 58% of all new star formation during this epoch arises from gas accretion. We also discuss how the total gas accretion rate is measured as Ṁ = 90±40 M⊙ yr−1 at this epoch, a value close to those found in some hydrodynamical simulations.


2012 ◽  
Vol 8 (S295) ◽  
pp. 159-162
Author(s):  
Oliver Steele ◽  
Daniel Thomas ◽  
Claudia Maraston ◽  
James Etherington ◽  

AbstractWe study the influence of environment on emission line properties using the Galaxy And Mass Assembly (GAMA) survey, taking care to disentangle the role of mass and environment. We look at the role of local density separating galaxies into classifications star forming, AGN, and SF/AGN composite using the BPT diagnostic diagram. We find that environment is generally less important as a driving factor than galaxy mass. The presence of emission lines, whether driven by star formation or central supermassive black hole activity mostly depends on galaxy mass consistently for all galaxy types.


Sign in / Sign up

Export Citation Format

Share Document