scholarly journals PRESSURE OF DEGENERATE AND RELATIVISTIC ELECTRONS IN A SUPERHIGH MAGNETIC FIELD

2013 ◽  
Vol 28 (36) ◽  
pp. 1350138 ◽  
Author(s):  
ZHI FU GAO ◽  
NA WANG ◽  
QIU HE PENG ◽  
XIANG DONG LI ◽  
YUAN JIE DU

Based on our previous work, we deduce a general formula for pressure of degenerate and relativistic electrons, Pe, which is suitable for superhigh magnetic fields, discuss the quantization of Landau levels of electrons, and consider the quantum electrodynamic (QED) effects on the equations of states (EOSs) for different matter systems. The main conclusions are as follows: Pe is related to the magnetic field B, matter density ρ, and electron fraction Ye; the stronger the magnetic field, the higher the electron pressure becomes; the high electron pressure could be caused by high Fermi energy of electrons in a superhigh magnetic field; compared with a common radio pulsar, a magnetar could be a more compact oblate spheroid-like deformed neutron star (NS) due to the anisotropic total pressure; and an increase in the maximum mass of a magnetar is expected because of the positive contribution of the magnetic field energy to the EOS of the star.

2008 ◽  
Vol 17 (09) ◽  
pp. 1591-1601
Author(s):  
R. SCHLICKEISER

In powerful cosmic nonthermal radiation sources with dominant magnetic-field self generation, the generation of magnetic fields at almost equipartition strength by relativistic plasma instabilities operates as fast as the acceleration or injection of ultra-high energy radiating electrons and hadrons in these sources. Consequently, the magnetic field strength becomes time-dependent and adjusts itself to the actual kinetic energy density of the radiating electrons in these sources. This coupling of the magnetic field and the magnetic field energy density to the kinetic energy of the radiating particles changes both the intrinsic temporal evolution of the relativistic particle energy spectrum after injection and the synchrotron and synchrotron self-Compton emissivities.


Author(s):  
Shinichi Ishiguri

We previously reported new superconductivity produced by an electrostatic field and a diffusion current in a semiconductor without refrigeration. In particular, the superconductivity was investigated theoretically and confirmed experimentally. Here, we determine that the derived superconducting quantum state can be reproduced in a capacitor. When circuits are formed with this new-type capacitor and diodes, a magnetic field is applied to the diodes’ depletion layer. The depletion layer is biased because of the conversion from the magnetic-field energy to electric-field energy, resulting in the diodes’ spontaneously emitting a current. Thus, the new-type capacitor is charged using no other energy source. This new phenomenon is described theoretically with assistance of initial experiments.


1990 ◽  
Vol 138 ◽  
pp. 273-277
Author(s):  
J.C. Henoux ◽  
B.V. Somov

Velocities of electrons, ions and neutrals are computed in the three-fluid approximation for an axisymmetrical magnetic field. By prescribing a radial dependence of the velocity of neutrals in agreement with a downflow, the radial dependence of the magnetic field energy density is derived for a given set of values of the magnetic field at the central and external boundaries. Flux-tube cooling by advection of ionization energy is found to be significant. Vortices in the low photosphere could produce significant electric power and DC current intensity along the coronal magnetic lines of forces. The velocities of neutrals, the size and the number of flux-tubes required to power flares in plage regions, are estimated.


2019 ◽  
Vol 28 ◽  
pp. 01002
Author(s):  
Mirosław Wołoszyn ◽  
Daniel Kowalak ◽  
Kazimierz Jakubiuk ◽  
Mikołaj Nowak

Computer simulation results of the flux compression generator (FCG) loaded with an inductor has been presented in this paper. Simulation research has been performed in order to select the parameters of FCG load coil properly. The influence of the load inductance and resistance on the current gain factor and the magnetic field energy accumulated in a load coil has been investigated.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 789
Author(s):  
Yan Zhao ◽  
Lixin Zhang ◽  
Xin Zhao ◽  
Jin Liu ◽  
Ming Gao

High-frequency electronic descaling devices are physical water treatment methods that use a high-frequency electromagnetic field to prevent and remove scale. The effectiveness of the method is verified by monitoring the growth of scale on the surface of heat exchange tubes. The microstructure of scale obtained from experiments is analyzed by scanning electron microscope (SEM), and the action characteristics of high-frequency electromagnetic fields on water are explored by observing the change of solution contact angle at different times. The experimental results show that the high-frequency electromagnetic field can slow down the scaling growth on the surface of heat exchange tubes by changing the morphology of scaling substances and the physicochemical properties of water. The cavity of the instrument is modeled and simulated by ANSYS Maxwell, and the three operating parameters, waveform, voltage and frequency, are changed respectively. The performance parameters of the cavity, such as magnetic field energy, electric field energy and magnetic flux, are calculated and compared, and then the more suitable operating parameters are selected to improve the performance of the instrument. The simulation results show that the high-frequency electromagnetic field generated by the anode rod in the axial position can be overlooked compared with the magnetic field energy. Square wave excitation produces greater magnetic field energy than using sine wave excitation, and as the voltage increases, the peak value of the magnetic field energy continues to rise and increases faster. With an increase in the frequency, the peak value of the magnetic field energy and magnetic flux peak will maintain a slight decrease over a certain frequency range. After this frequency range, the peak value of magnetic field energy and magnetic flux peak will decrease rapidly. This decrease is due to the relaxation caused by the change of the waveform direction. The influence of time and an increase in the frequency will significantly increase the influence of the relaxation time.


2021 ◽  
Author(s):  
Chen Shi ◽  
Anton Artemyev ◽  
Marco Velli ◽  
Anna Tenerani

<p>Magnetic reconnection converts the magnetic field energy into thermal and kinetic energies of the plasma. This process usually happens at extremely fast speed and is therefore believed to be a fundamental mechanism to explain various explosive phenomena such as coronal mass ejections and planetary magnetospheric storms. How magnetic reconnection is triggered from the large magnetohydrodynamic (MHD) scales remains an open question, with some theoretical and numerical studies showing the tearing instability to be involved. Observations in the Earth’s magnetotail and near the magnetopause show that a finite normal magnetic field is usually present inside the reconnecting current sheet. Besides, such a normal field may also exist in the solar corona. However, how this normal magnetic field modifies the tearing instability is not thoroughly studied. Here we discuss the linear tearing instability inside a two-dimensional current sheet with a normal component of magnetic field where the magnetic tension force is balanced by ion flows parallel and anti-parallel to the magnetic field. We solve the dispersion relation of the tearing mode with wave vector parallel to the reconnecting magnetic field. Our results confirm that the finite normal magnetic field stabilizes the tearing mode and makes the mode oscillatory instead of purely growing.</p>


2016 ◽  
Vol 31 (11) ◽  
pp. 1650070 ◽  
Author(s):  
Cui Zhu ◽  
Zhi Fu Gao ◽  
Xiang Dong Li ◽  
Na Wang ◽  
Jian Ping Yuan ◽  
...  

In this paper, we investigate the electron Landau level stability and its influence on the electron Fermi energy, [Formula: see text], in the circumstance of magnetars, which are powered by magnetic field energy. In a magnetar, the Landau levels of degenerate and relativistic electrons are strongly quantized. A new quantity [Formula: see text], the electron Landau level stability coefficient is introduced. According to the requirement that [Formula: see text] decreases with increasing the magnetic field intensity [Formula: see text], the magnetic field index [Formula: see text] in the expression of [Formula: see text] must be positive. By introducing the Dirac-[Formula: see text] function, we deduce a general formulae for the Fermi energy of degenerate and relativistic electrons, and obtain a particular solution to [Formula: see text] in a superhigh magnetic field (SMF). This solution has a low magnetic field index of [Formula: see text], compared with the previous one, and works when [Formula: see text] and [Formula: see text] Gauss. By modifying the phase space of relativistic electrons, a SMF can enhance the electron number density [Formula: see text], and decrease the maximum of electron Landau level number, which results in a redistribution of electrons. According to Pauli exclusion principle, the degenerate electrons will fill quantum states from the lowest Landau level to the highest Landau level. As [Formula: see text] increases, more and more electrons will occupy higher Landau levels, though [Formula: see text] decreases with the Landau level number [Formula: see text]. The enhanced [Formula: see text] in a SMF means an increase in the electron Fermi energy and an increase in the electron degeneracy pressure. The results are expected to facilitate the study of the weak-interaction processes inside neutron stars and the magnetic-thermal evolution mechanism for magnetars.


2007 ◽  
Vol 34 (15) ◽  
Author(s):  
B. Hnat ◽  
S. C. Chapman ◽  
K. Kiyani ◽  
G. Rowlands ◽  
N. W. Watkins

Sign in / Sign up

Export Citation Format

Share Document