scholarly journals VLTI/MIDI atlas of disks around low- and intermediate-mass young stellar objects

2018 ◽  
Vol 617 ◽  
pp. A83 ◽  
Author(s):  
J. Varga ◽  
P. Ábrahám ◽  
L. Chen ◽  
Th. Ratzka ◽  
K. É. Gabányi ◽  
...  

Context. Protoplanetary disks show large diversity regarding their morphology and dust composition. With mid-infrared interferometry the thermal emission of disks can be spatially resolved, and the distribution and properties of the dust within can be studied. Aims. Our aim is to perform a statistical analysis on a large sample of 82 disks around low- and intermediate-mass young stars, based on mid-infrared interferometric observations. We intend to study the distribution of disk sizes, variability, and the silicate dust mineralogy. Methods. Archival mid-infrared interferometric data from the MIDI instrument on the Very Large Telescope Interferometer are homogeneously reduced and calibrated. Geometric disk models are used to fit the observations to get spatial information about the disks. An automatic spectral decomposition pipeline is applied to analyze the shape of the silicate feature. Results. We present the resulting data products in the form of an atlas, containing N band correlated and total spectra, visibilities, and differential phases. The majority of our data can be well fitted with a continuous disk model, except for a few objects, where a gapped model gives a better match. From the mid-infrared size–luminosity relation we find that disks around T Tauri stars are generally colder and more extended with respect to the stellar luminosity than disks around Herbig Ae stars. We find that in the innermost part of the disks (r ≲ 1 au) the silicate feature is generally weaker than in the outer parts, suggesting that in the inner parts the dust is substantially more processed. We analyze stellar multiplicity and find that in two systems (AB Aur and HD 72106) data suggest a new companion or asymmetric inner disk structure. We make predictions for the observability of our objects with the upcoming Multi-AperTure mid-Infrared SpectroScopic Experiment (MATISSE) instrument, supporting the practical preparations of future MATISSE observations of T Tauri stars.

2018 ◽  
Vol 14 (S345) ◽  
pp. 128-131
Author(s):  
József Varga ◽  
Péter Ábrahám ◽  
Lei Chen ◽  
Thorsten Ratzka ◽  
K. É. Gabányi ◽  
...  

AbstractWe present our results from a mid-infrared interferometric survey targeted at the planet-forming region in the circumstellar disks around low- and intermediate-mass young stars. Our sample consists of 82 objects, including T Tauri stars, Herbig Ae stars, and young eruptive stars. Our main results are: 1) Disks around T Tauri stars are similar to those around Herbig Ae stars, but are relatively more extended once we account for stellar luminosity. 2) From the distribution of the sizes of the mid-infrared emitting region we find that inner dusty disk holes may be present in roughly half of the sample. 3) Our analysis of the silicate spectral feature reveals that the dust in the inner ~1 au region of disks is generally more processed than that in the outer regions. 4) The dust in the disks of T Tauri stars typically show weaker silicate emission in the N band spectrum, compared to Herbig Ae stars, which may indicate a general difference in the disk structure. Our data products are available at VizieR, and at the following web page: http://konkoly.hu/MIDI_atlas.


2007 ◽  
Vol 3 (S243) ◽  
pp. 1-12 ◽  
Author(s):  
Claude Bertout

AbstractAccretion and magnetic fields play major roles in several of the many models put forward to explain the properties of T Tauri stars since their discovery by Alfred Joy in the 1940s. Early investigators already recognized in the 1950s that a source of energy external to the star was needed to account for the emission properties of these stars in the optical range.The opening of new spectral windows from the infrared to the ultraviolet in the 1970s and 1980s showed that the excess emission of T Tauri stars and related objects extends into all wavelength domains, while evidence of outflow and/or infall in their circumstellar medium was accumulating.Although the disk hypothesis had been put forward by Merle Walker as early as 1972 to explain properties of YY Orionis stars and although Lynden-Bell and Pringle worked out the accretion disk model and applied it specifically to T Tauri stars in 1974, the prevailing model for young stellar objects until the mid-1980s assumed that they experienced extreme solar-type activity. It then took until the late 1980s before the indirect evidence of disks presented by several teams of researchers became so compelling that a paradigm shift occurred, leading to the current consensual picture.I briefly review the various models proposed for explaining the properties of young stellar objects, from their discovery to the direct observations of circumstellar disks that have so elegantly confirmed the nature of young stars. I will go on to discuss more modern issues concerning their accretion disk properties and conclude with some results obtained in a recent attempt to better understand the evolution of Taurus-Auriga young stellar objects.


2019 ◽  
Vol 627 ◽  
pp. A135 ◽  
Author(s):  
A. Bhardwaj ◽  
N. Panwar ◽  
G. J. Herczeg ◽  
W. P. Chen ◽  
H. P. Singh

Context. Pre-main-sequence variability characteristics can be used to probe the physical processes leading to the formation and initial evolution of both stars and planets. Aims. The photometric variability of pre-main-sequence stars is studied at optical wavelengths to explore star–disk interactions, accretion, spots, and other physical mechanisms associated with young stellar objects. Methods. We observed a field of 16′ × 16′ in the star-forming region Pelican Nebula (IC 5070) at BVRI wavelengths for 90 nights spread over one year in 2012−2013. More than 250 epochs in the VRI bands are used to identify and classify variables up to V ∼ 21 mag. Their physical association with the cluster IC 5070 is established based on the parallaxes and proper motions from the Gaia second data release (DR2). Multiwavelength photometric data are used to estimate physical parameters based on the isochrone fitting and spectral energy distributions. Results. We present a catalog of optical time-series photometry with periods, mean magnitudes, and classifications for 95 variable stars including 67 pre-main-sequence variables towards star-forming region IC 5070. The pre-main-sequence variables are further classified as candidate classical T Tauri and weak-line T Tauri stars based on their light curve variations and the locations on the color-color and color-magnitude diagrams using optical and infrared data together with Gaia DR2 astrometry. Classical T Tauri stars display variability amplitudes up to three times the maximum fluctuation in disk-free weak-line T Tauri stars, which show strong periodic variations. Short-term variability is missed in our photometry within single nights. Several classical T Tauri stars display long-lasting (≥10 days) single or multiple fading and brightening events of up to two magnitudes at optical wavelengths. The typical mass and age of the pre-main-sequence variables from the isochrone fitting and spectral energy distributions are estimated to be ≤1 M⊙ and ∼2 Myr, respectively. We do not find any correlation between the optical amplitudes or periods with the physical parameters (mass and age) of pre-main-sequence stars. Conclusions. The low-mass pre-main-sequence stars in the Pelican Nebula region display distinct variability and color trends and nearly 30% of the variables exhibit strong periodic signatures attributed to cold spot modulations. In the case of accretion bursts and extinction events, the average amplitudes are larger than one magnitude at optical wavelengths. These optical magnitude fluctuations are stable on a timescale of one year.


2019 ◽  
Vol 622 ◽  
pp. A72 ◽  
Author(s):  
F. Villebrun ◽  
E. Alecian ◽  
G. Hussain ◽  
J. Bouvier ◽  
C. P. Folsom ◽  
...  

Context. The origin of the fossil magnetic fields detected in 5 to 10% of intermediate-mass main sequence stars is still highly debated.Aims. We want to bring observational constraints to a large population of intermediate-mass pre-main sequence (PMS) stars in order to test the theory that convective-dynamo fields generated during the PMS phases of stellar evolution can occasionally relax into fossil fields on the main sequence.Methods. Using distance estimations, photometric measurements, and spectropolarimetric data from HARPSpol and ESPaDOnS of 38 intermediate-mass PMS stars, we determined fundamental stellar parameters (Teff,Landvsini) and measured surface magnetic field characteristics (including detection limits for non-detections, and longitudinal fields and basic topologies for positive detections). Using PMS evolutionary models, we determined the mass, radius, and internal structure of these stars. We compared different PMS models to check that our determinations were not model-dependant. We then compared the magnetic characteristics of our sample accounting for their stellar parameters and internal structures.Results. We detect magnetic fields in about half of our sample. About 90% of the magnetic stars have outer convective envelopes larger than ∼25% of the stellar radii, and heavier than ∼2% of the stellar mass. Going to higher mass, we find that the magnetic incidence in intermediate-mass stars drops very quickly, within a timescale on the order of few times 0.1 Myr. Finally, we propose that intermediate-mass T Tauri stars with large convective envelopes, close to the fully convective limit, have complex fields and that their dipole component strengths may decrease as the sizes of their convective envelopes decrease, similar to lower-mass T Tauri stars.


2001 ◽  
Vol 200 ◽  
pp. 265-274 ◽  
Author(s):  
Chris D. Koresko ◽  
Christoph Leinert

Infrared companions are young stellar objects with unusual properties gravitationally bound to more or less typical T Tauri stars. As such they promise to be the source of information on either a particular phase in the development of young stars or on a particular mode of development. We discuss the observed properties of infrared companions as well as attempts to explain their physical status with the aim to see how much of solid conclusion has been obtained so far.


1987 ◽  
Vol 122 ◽  
pp. 103-104
Author(s):  
U. Finkenzeller ◽  
G. Basri

We discuss new spectroscopic material on 7 T Tauri stars of low to intermediate activity level which have envelopes of low optical thickness and small circumstellar/interstellar extinction. We show that difference plots between the target star and appropriate standards are a powerful tool to probe the stellar envelope structure. In our sample we find 1 object with a P Cyg type, 3 with inverse P Cyg type, and 3 with symmetrical Balmer line profiles. We conclude that the physical processes in these T Tauri stars do not differ qualitatively from the ones found in extremely active ones. In particular, the inverse P Cyg type profiles are not restricted to stars with very opaque envelopes and are possibly a much more common attribute of young stellar objects.


2007 ◽  
Vol 3 (S249) ◽  
pp. 359-368
Author(s):  
A. Carmona ◽  
M. E. van den Ancker ◽  
Th. Henning ◽  
Ya. Pavlyuchenkov ◽  
C. P. Dullemond ◽  
...  

AbstractThe mass and dynamics of protoplanetary disks are dominated by molecular hydrogen (H2). However, observationally very little is known about the H2. In this paper, we discuss two projects aimed to constrain the properties of H2 in the disk's planet forming region (R<50AU). First, we present a sensitive survey for pure-rotational H2 emission at 12.278 and 17.035 μm in a sample of nearby Herbig Ae/Be and T Tauri stars using VISIR, ESO's VLT high-resolution mid-infrared spectrograph. Second, we report on a search for H2 ro-vibrational emission at 2.1228, 2.2233 and 2.2477 μm in the classical T Tauri star LkHα 264 and the debris disk 49 Cet employing CRIRES, ESO's VLT high-resolution near-infrared spectrograph.VISIR project: none of the sources show H2 mid-IR emission. The observed disks contain less than a few tenths of MJupiter of optically thin H2 at 150 K, and less than a few MEarth at T>300 K. % and higher T. Our non-detections are consistent with the low flux levels expected from the small amount of H2 gas in the surface layer of a Chiang and Goldreich (1997) Herbig Ae two-layer disk model. In our sources the H2 and dust in the surface layer have not significantly departed from thermal coupling (Tgas/Tdust<2) and the gas-to-dust ratio in the surface layer is very likely <1000.CRIRES project: The H2 lines at 2.1218 μm and 2.2233 μm are detected in LkHα 264. An upper limit on the 2.2477 μm H2 line flux in LkHα 264 is derived. 49 Cet does not exhibit H2 emission in any of observed lines. There are a few MMoon of optically thin hot H2 in the inner disk (∼0.1 AU) of LkHα 264, and less than a tenth of a MMoon of hot H2 in the inner disk of 49 Cet. The shape of the 1–0 S(0) line indicates that LkHα disk is close to face-on (i<35o). The measured 1–0 S(0)/1–0 S(1) and 2–1 S(1)/1–0 S(1) line ratios in LkHα 264 indicate that the H2 is thermally excited at T<1500 K. The lack of H2 emission in the NIR spectra of 49 Cet and the absence of Hα emission suggest that the gas in the inner disk of 49 Cet has dissipated.


2004 ◽  
Vol 128 (3) ◽  
pp. 1294-1318 ◽  
Author(s):  
Nuria Calvet ◽  
James Muzerolle ◽  
César Briceño ◽  
Jesus Hernández ◽  
Lee Hartmann ◽  
...  

2010 ◽  
Vol 6 (S275) ◽  
pp. 404-405
Author(s):  
María V. del Valle ◽  
Gustavo E. Romero

AbstractT Tauri stars are low mass, pre-main sequence stars. These objects are surrounded by an accretion disk and present strong magnetic activity. T Tauri stars are copious emitters of X-ray emission which belong to powerful magnetic reconnection events. Strong magnetospheric shocks are likely outcome of massive reconnection. Such shocks can accelerate particles up to relativistic energies through Fermi mechanism. We present a model for the high-energy radiation produced in the environment of T Tauri stars. We aim at determining whether this emission is detectable. If so, the T Tauri stars should be very nearby.


Sign in / Sign up

Export Citation Format

Share Document