scholarly journals Galaxy evolution and radiative properties in the early universe: Multi-wavelength analysis in cosmological simulations

2019 ◽  
Vol 15 (S352) ◽  
pp. 55-59
Author(s):  
Shohei Arata ◽  
Hidenobu Yajima ◽  
Kentaro Nagamine ◽  
Yuexing Li ◽  
Sadegh Khochfar

AbstractRecent observations have successfully detected UV or infrared flux from galaxies at the epoch of reionization. However, the origin of their radiative properties has not been fully understood yet. Combining cosmological hydrodynamic simulations and radiative transfer calculations, we present theoretical predictions of multi-wavelength radiative properties of the first galaxies at z = 6–15. We find that most of the gas and dust are ejected from star-forming regions due to supernova (SN) feedback, which allows UV photons to escape. We show that the peak of SED rapidly shifts between UV and infrared wavelengths on a timescale of 100 Myr due to intermittent star formation and feedback. When dusty gas covers the star-forming regions, the galaxies become bright in the observed-frame sub-millimeter wavelengths. In addition, we find that the escape fraction of ionizing photons also changes between 1–40% at z > 10. The mass fraction of H ii region changes with star formation history, resulting in fluctuations of metal lines and Lyman-α line luminosities. In the starbursting phase of galaxies with a halo mass ∼1011Mȯ (1012Mȯ), the simulated galaxy has L[OIII] ∼ 1042 (1043) erg s−1, which is consistent with the observed star-forming galaxies at z > 7. Our simulations suggest that deep [Cii] observation with ALMA can trace the distribution of neutral gas extending over ∼20 physical kpc. We also find that the luminosity ratio L[OIII]/L[CII] decreases with bolometric luminosity due to metal enrichment. Our simulations show that the combination of multi-wavelength observations by ALMA and JWST will be able to reveal the multi-phase ISM structure and the transition from starbursting to outflowing phases of high-z galaxies.

2019 ◽  
Vol 15 (S341) ◽  
pp. 240-244
Author(s):  
Hidenobu Yajima ◽  
Shohei Arata ◽  
Makito Abe ◽  
Kentaro Nagamine

AbstractRecent discoveries of high-redshift galaxies have revealed the diversity of their physical properties, from normal star-forming galaxies to starburst galaxies. To understand the properties of these observed galaxies, it is crucial to understand the star formation (SF) history, and the radiation properties associated with the SF activity. Here we present the results of cosmological hydrodynamic simulations with zoom-in initial conditions, and show the formation of the first galaxies and their evolution towards observable galaxies at z = 6. In addition, we show their multi-wavelength radiative properties. We find that star formation occurs intermittently due to supernova (SN) feedback at z > 10, and their radiation properties rapidly change with time. We suggest that the first galaxies are bright at UV wavelengths just after the starburst phase, and become extended Lyman-alpha sources. We also show that massive galaxies cause dusty starburst and become bright at infrared wavelengths.


2018 ◽  
Vol 14 (S344) ◽  
pp. 413-416
Author(s):  
Elena Sacchi ◽  
Michele Cignoni ◽  
Alessandra Aloisi ◽  
Monica Tosi

AbstractWe present here the results obtained from studying the resolved stellar populations of two dwarf irregular galaxies in the nearby Universe. These galaxies, DDO 68 and NGC 4449, were studied within the Legacy ExtraGalactic UV Survey, an HST program aimed to uncover the many ways in which the star formation (SF) process occurs at different scales. Thanks to the deep photometry obtained in different bands (from λ2704 Å to λ8057 Å), we were able to connect the location and timescales of the star forming regions within the galaxies to merging and interaction with gas clouds and satellites, a crucial aspect of galaxy evolution, even in such small systems. From the color-magnitude diagrams of the analyzed galaxies we were able to recover their star formation history (up to ∼ 2 − 3 Gyr ago since we do not observe the oldest main sequence turn-off or horizontal branch, due to the systems’ distance), finding that the SF never really stopped, but proceeded continuously even with the succession of high and low activity. The time intervals where we find higher SF rates in the two galaxies well agree with the dynamical timescales of previous interactions events, which might represent a major channel for triggering the SF in relatively isolated galaxies.


2020 ◽  
Vol 58 (1) ◽  
pp. 661-725 ◽  
Author(s):  
Natascha M. Förster Schreiber ◽  
Stijn Wuyts

Ever deeper and wider look-back surveys have led to a fairly robust outline of the cosmic star-formation history, which culminated around [Formula: see text]; this period is often nicknamed “cosmic noon.” Our knowledge about star-forming galaxies at these epochs has dramatically advanced from increasingly complete population censuses and detailed views of individual galaxies. We highlight some of the key observational insights that influenced our current understanding of galaxy evolution in the equilibrium growth picture: ▪  Scaling relations between galaxy properties are fairly well established among massive galaxies at least out to [Formula: see text], pointing to regulating mechanisms already acting on galaxy growth. ▪  Resolved views reveal that gravitational instabilities and efficient secular processes within the gas- and baryon-rich galaxies at [Formula: see text] play an important role in the early buildup of galactic structure. ▪  Ever more sensitive observations of kinematics at [Formula: see text] are probing the baryon and dark matter budget on galactic scales and the links between star-forming galaxies and their likely descendants. ▪  Toward higher masses, massive bulges, dense cores, and powerful AGNs and AGN-driven outflows are more prevalent and likely play a role in quenching star formation. We outline emerging questions and exciting prospects for the next decade with upcoming instrumentation, including the James Webb Space Telescope and the next generation of extremely large telescopes.


2010 ◽  
Vol 76 (3-4) ◽  
pp. 569-578
Author(s):  
S. VAN LOO ◽  
S. A. E. G. FALLE ◽  
T. W. HARTQUIST ◽  
O. HAVNES ◽  
G. E. MORFILL

AbstractStar formation occurs in dark molecular regions where the number density of hydrogen nuclei nH exceeds 104 cm−3 and the fractional ionization is 10−7 or less. Dust grains with sizes ranging up to tenths of microns and perhaps down to tens of nanometers contain just less than 1% of the mass. Recombination on grains is important for the removal of gas-phase ions, which are produced by cosmic rays penetrating the dark regions. Collisions of neutrals with charged grains contribute significantly to the coupling of the magnetic field to the neutral gas. Consequently, the dynamics of the grains must be included in the magnetohydrodynamic models of large-scale collapse, the evolution of waves and the structures of shocks important in star formation.


2015 ◽  
Vol 11 (S315) ◽  
pp. 26-29
Author(s):  
Julia Kamenetzky ◽  
Naseem Rangwala ◽  
Jason Glenn ◽  
Philip Maloney ◽  
Alex Conley

AbstractMolecular gas is the raw material for star formation and is commonly traced by the carbon monoxide (CO) molecule. The atmosphere blocks all but the lowest-J transitions of CO for observatories on the ground, but the launch of the Herschel Space Observatory revealed the CO emission of nearby galaxies from J = 4−3 to J = 13−12. Herschel showed that mid- and high-J CO lines in nearby galaxies are emitted from warm gas, accounting for approximately 10% of the molecular mass, but the majority of the CO luminosity. The energy budget of this warm, highly-excited gas is a significant window into the feedback interactions among molecular gas, star formation, and galaxy evolution. Likely, mechanical heating is required to explain the excitation. Such gas has also been observed in star forming regions within our galaxy.We have examined all ~300 spectra of galaxies from the Herschel Fourier Transform Spectrometer and measured line fluxes or upper limits for the CO J = 4−3 to J = 13−12, [CI], and [NII] 205 micron lines in ~200 galaxies, taking systematic effects of the FTS into account. We will present our line fitting method, illustrate trends available so far in this large sample, and preview the full 2-component radiative transfer likelihood modeling of the CO emission using an illustrative sample of 20 galaxies, including comparisons to well-resolved galactic regions. This work is a comprehensive study of mid- and high-J CO emission among a variety of galaxy types, and can be used as a resource for future (sub)millimeter studies of galaxies with ground-based instruments.


2015 ◽  
Vol 12 (S316) ◽  
pp. 129-130
Author(s):  
Jin-Zeng Li ◽  
Jinghua Yuan ◽  
Hong-Li Liu ◽  
Yuefang Wu ◽  
Ya-Fang Huang

AbstractIn order to understand the star formation process under the influence of H ii regions, we have carried out extensive investigations to well selected star-forming regions which all have been profoundly affected by existing massive O type stars. On the basis of multi-wavelength data from mid-infrared to millimeter collected using Spitzer, Herschel, and ground based radio telescopes, the physical status of interstellar medium and star formation in these regions have been revealed. In a relatively large infrared dust bubble, active star formation is undergoing and the shell is still expanding. Signs of compressed gas and triggered star formation have been tentatively detected in a relatively small bubble. The dense cores in the Rosette Molecular Complex detected at 1.1 mm using SMA have been speculated to have a likely triggered origin according to their spatial distribution. Although some observational results have been obtained, more efforts are necessary to reach trustworthy conclusions.


2006 ◽  
Vol 2 (S237) ◽  
pp. 311-316
Author(s):  
Robert C. Kennicutt

AbstractNew multi-wavelength data on nearby galaxies are providing a much more accurate and complete observational picture of star formation on galactic scales. Here I briefly report on recent results from the Spitzer Infrared Nearby Galaxies Survey (SINGS). These provide new constraints on the frequency and lifetime of deeply obscured star-forming regions in galaxies, the measurement of dust-corrected star formation rates in galaxies, and the form of the spatially-resolved Schmidt law.


2020 ◽  
Vol 496 (3) ◽  
pp. 2821-2835 ◽  
Author(s):  
Tie Liu ◽  
Neal J Evans ◽  
Kee-Tae Kim ◽  
Paul F Goldsmith ◽  
Sheng-Yuan Liu ◽  
...  

ABSTRACT We report studies of the relationships between the total bolometric luminosity (Lbol or LTIR) and the molecular line luminosities of J = 1 − 0 transitions of H13CN, H13CO+, HCN, and HCO+ with data obtained from ACA observations in the ‘ATOMS’ survey of 146 active Galactic star-forming regions. The correlations between Lbol and molecular line luminosities $L^{\prime }_{\rm mol}$ of the four transitions all appear to be approximately linear. Line emission of isotopologues shows as large scatters in Lbol–$L^{\prime }_{\rm mol}$ relations as their main line emission. The log(Lbol/$L^{\prime }_{\rm mol}$) for different molecular line tracers have similar distributions. The Lbol-to-$L^{\prime }_{\rm mol}$ ratios do not change with galactocentric distances (RGC) and clump masses (Mclump). The molecular line luminosity ratios (HCN-to-HCO+, H13CN-to-H13CO+, HCN-to-H13CN, and HCO+-to-H13CO+) all appear constant against Lbol, dust temperature (Td), Mclump, and RGC. Our studies suggest that both the main lines and isotopologue lines are good tracers of the total masses of dense gas in Galactic molecular clumps. The large optical depths of main lines do not affect the interpretation of the slopes in star formation relations. We find that the mean star formation efficiency (SFE) of massive Galactic clumps in the ‘ATOMS’ survey is reasonably consistent with other measures of the SFE for dense gas, even those using very different tracers or examining very different spatial scales.


2008 ◽  
Vol 4 (S256) ◽  
pp. 215-226
Author(s):  
Mónica Rubio

AbstractUnderstanding the process of star formation in low metallicity systems is one of the key studies in the early stages of galaxy evolution. The Magellanic Clouds, being the nearest examples of low metallicity systems, allow us to study in detail their star forming regions. As a consequence of their proximity we can resolve the molecular clouds and the regions of star formation individually. Therefore we can increase our knowledge of the interaction of young luminous stars with their environment. We will present results of multiwavelenghts studies of LMC and SMC massive star forming regions, which includes properties of the cold molecular gas, the embedded young population associated with molecular clouds, and the interaction of newly born stars with the surrounding interstellar medium, based on ASTE and APEX submillimeter observations complemented high sensitivity NIR groud based observations and Spitzer results.


2009 ◽  
Vol 5 (H15) ◽  
pp. 406-407
Author(s):  
Doug Johnstone

AbstractCoordinated multi-wavelength surveys of molecular clouds are providing strong constraints on the physical conditions within low-mass star-forming regions. In this manner, Perseus and Ophiuchus have been exceptional laboratories for testing the earliest phases of star formation. Highlights of these results are: (1) dense cores form only in high column density regions, (2) dense cores contain only a few percent of the cloud mass, (3) the mass distribution of the dense cores is similar to the IMF, (4) the more massive cores are most likely to contain embedded protostars, and (5) the kinematics of the dense cores and the bulk gas show significant coupling.


Sign in / Sign up

Export Citation Format

Share Document