Radio galaxies with and without emission lines

2020 ◽  
Vol 15 (S359) ◽  
pp. 396-401
Author(s):  
Grażyna Stasińska ◽  
Natalia Vale Asari ◽  
Dorota Kozieł-Wierzbowska

AbstractUsing the recent ROGUE I catalogue of galaxies with radio cores (Kozie_l-Wierzbowska et al. 2020) and after selecting the objects which are truly radio active galactic nuclei, AGNs, (which more than doubles the samples available so far), we perform a thorough comparison of the properties of radio galaxies with and without optical emission lines (galaxies where the equivalent width of Hα is smaller than 3Å are placed in the last category). We do not find any strong dichotomy between the two classes as regards the radio luminosities or black hole masses. The same is true when using the common classification into high- and low-excitation radio galaxies (HERGs and LERGs respectively).

1998 ◽  
Vol 500 (2) ◽  
pp. 642-659 ◽  
Author(s):  
Kiyoshi Hayashida ◽  
Sigenori Miyamoto ◽  
Shunji Kitamoto ◽  
Hitoshi Negoro ◽  
Hajime Inoue

2021 ◽  
Vol 507 (4) ◽  
pp. 5205-5213
Author(s):  
XueGuang Zhang

ABSTRACT In this manuscript, an interesting blue active galactic nuclei (AGNs) SDSS J154751.94+025550 (=SDSS J1547) is reported with very different line profiles of broad Balmer emission lines: double-peaked broad H β but single-peaked broad H α. SDSS J1547 is the first AGN with detailed discussions on very different line profiles of the broad Balmer emission lines, besides the simply mentioned different broad lines in the candidate for a binary black hole (BBH) system in SDSS J0159+0105. The very different line profiles of the broad Balmer emission lines can be well explained by different physical conditions to two central BLRs in a central BBH system in SDSS J1547. Furthermore, the long-term light curve from CSS can be well described by a sinusoidal function with a periodicity about 2159 d, providing further evidence to support the expected central BBH system in SDSS J1547. Therefore, it is interesting to treat different line profiles of broad Balmer emission lines as intrinsic indicators of central BBH systems in broad line AGN. Under assumptions of BBH systems, 0.125 per cent of broad-line AGN can be expected to have very different line profiles of broad Balmer emission lines. Future study on more broad line AGN with very different line profiles of broad Balmer emission lines could provide further clues on the different line profiles of broad Balmer emission lines as indicator of BBH systems.


2020 ◽  
Vol 6 (27) ◽  
pp. eaay9711 ◽  
Author(s):  
D. Krishnarao ◽  
R. A. Benjamin ◽  
L. M. Haffner

Optical emission lines are used to categorize galaxies into three groups according to their dominant central radiation source: active galactic nuclei, star formation, or low-ionization (nuclear) emission regions [LI(N)ERs] that may trace ionizing radiation from older stellar populations. Using the Wisconsin H-Alpha Mapper, we detect optical line emission in low-extinction windows within eight degrees of Galactic Center. The emission is associated with the 1.5-kiloparsec-radius “Tilted Disk” of neutral gas. We modify a model of this disk and find that the hydrogen gas observed is at least 48% ionized. The ratio [NII] λ6584 angstroms/Hα λ6563 angstroms increases from 0.3 to 2.5 with Galactocentric radius; [OIII] λ5007 angstroms and Hβ λ4861 angstroms are also sometimes detected. The line ratios for most Tilted Disk sightlines are characteristic of LI(N)ER galaxies.


2001 ◽  
Vol 555 (2) ◽  
pp. L79-L82 ◽  
Author(s):  
Laura Ferrarese ◽  
Richard W. Pogge ◽  
Bradley M. Peterson ◽  
David Merritt ◽  
Amri Wandel ◽  
...  

2017 ◽  
Vol 13 (S336) ◽  
pp. 135-136
Author(s):  
E. Fedorova ◽  
B. I. Hnatyk ◽  
V. I. Zhdanov ◽  
A. Vasylenko

AbstractMapping the maser emission of subnuclear regions of active galactic nuclei (AGN) enable us to determine some interesting details of the geometry of the accretion disks (AD) under the condition that they have “maser skin”. Additional information about disk warp in the innermost zone near the central black hole (BH) can be disclosed by means of modeling the shape of the relativistically broadened iron emission lines in the energy range 6-7 keV. Here we analyze the influence of the AD geometry (warp) on the shape of the set of relativistically broadened emission lines, as well as consider some examples of AGNs identified by maser mapping techinque as warped and having the complex shape of iron lines near 6.4 keV.


2020 ◽  
Vol 499 (1) ◽  
pp. 1233-1249
Author(s):  
M J Rosenthal ◽  
I Zaw

ABSTRACT We present the results of the first dedicated survey for 22 GHz H2O maser emission in dwarf galaxies outside of the Local Group, with the aim of discovering disc masers. Studies of disc masers yield accurate and precise measurements of black hole (BH) mass, and such measurements in dwarf galaxies would be key to understanding the low-mass end of BH–galaxy coevolution. We used the Green Bank Telescope to survey 100 nearby (z ≲ 0.055) dwarf galaxies (M* ≲ 109.5 M⊙) with optical emission line ratios indicative of accretion on to a massive black hole. We detected no new masers down to a limit of ∼12 mJy (5σ). We compared the properties of our sample with those of ∼1850 known detections and non-detections in massive galaxies. We find, in agreement with previous studies, that masers are preferentially hosted by Seyferts and highly obscured, [O iii]-bright active galactic nuclei (AGNs). Our sample has fewer Seyferts, is less obscured, and is [O iii]-faint. Though the overall maser detection rate is ∼3 per cent in massive galaxies, the predicted rate for our sample, weighted by its optical properties, is ∼0.6–1.7 per cent, corresponding to a probability of making no detections of ∼20–50 per cent. We also found a slight increase in the detection rate with increased stellar mass in previously surveyed galaxies. However, further observations are required to discern whether there is an intrinsic difference between the maser fraction in active dwarf galaxies and in their massive counterparts for the same AGN properties.


Sign in / Sign up

Export Citation Format

Share Document