Unveiling the nuclear region of NGC 6868: Mapping the stellar population and ionized gas

2019 ◽  
Vol 15 (S359) ◽  
pp. 418-420
Author(s):  
João P. V. Benedetti ◽  
Rogério Riffel ◽  
Tiago V. Ricci ◽  
João E. Steiner ◽  
Rogemar A. Riffel ◽  
...  

AbstractWe mapped the stellar population and emission gas properties in the nuclear region of NGC 6868 using datacubes extracted with Gemini Multi-Object Spectrograph (GMOS) in the Integral Field Unit (IFU) mode. To obtain the star-formation history of this galaxy we used the starlight code together with the new generation of MILES simple stellar population models. The stellar population dominating (95% in light fraction) the central region of NGC 6868 is old and metal rich (~10 Gyr, 2.2 Z⊙). We also derived the kinematics and emission line fluxes of ionized gas with the IFSCube package. A rotation disk is clearly detected in the nuclear region of the galaxy and no broad components were detected. Also, there is a region where the emission lines disappear almost completely, probably due to diffuse ionized gas component. Channel maps, diagnostic diagrams and stellar kinematics are still under analysis.

2014 ◽  
Vol 11 (S308) ◽  
pp. 383-389
Author(s):  
M. A. Aragón-Calvo ◽  
Mark C. Neyrinck ◽  
Joseph Silk

AbstractThe star formation history of galaxies is a complex process usually considered to be stochastic in nature, for which we can only give average descriptions such as the color-density relation. In this work we follow star-forming gas particles in a hydrodynamical N-body simulation back in time in order to study their initial spatial configuration. By keeping record of the time when a gas particle started forming stars we can produce Lagrangian gas-star isochrone surfaces delineating the surfaces of accreting gas that begin producing stars at different times. These surfaces form a complex a network of filaments in Eulerian space from which galaxies accrete cold gas. Lagrangian accretion surfaces are closely packed inside dense regions, intersecting each other, and as a result galaxies inside proto-clusters stop accreting gas early, naturally explaining the color dependence on density. The process described here has a purely gravitational / geometrical origin, arguably operating at a more fundamental level than complex processes such as AGN and supernovae, and providing a conceptual origin for the color-density relation.


2009 ◽  
Vol 5 (S266) ◽  
pp. 366-366
Author(s):  
Jura Borissova ◽  
Radostin Kurtev ◽  
Margaret M. Hanson ◽  
Leonid Georgiev ◽  
Valentin Ivanov ◽  
...  

AbstractWe are reporting some recent results from our long-term program aimed at characterizing the obscured present-day star cluster population in the Galaxy. Our goal is to expand the current census of the Milky Way's inner stellar disk to guide models seeking to understand the structure and recent star-formation history of our Galaxy. The immediate goal is to derive accurate cluster physical parameters using precise infrared photometry and spectroscopy. So far, we observed approximately 60 star cluster candidates selected from different infrared catalogs. Their nature, reddening, distance, age and mass are analyzed. Two of them, Mercer 3 and Mercer 5, are new obscured Milky Way globular clusters. Among the newly identified open clusters, the objects [DBS2003] 179, Mercer 23, Mercer 30, Mercer 70, and [DBS2003] 106 are particularly interesting because they contain massive young OB and Wolf–Rayet stars with strong emission lines.


2008 ◽  
Vol 4 (S256) ◽  
pp. 281-286
Author(s):  
Carme Gallart ◽  
Ingrid Meschin ◽  
Antonio Aparicio ◽  
Peter B. Stetson ◽  
Sebastián L. Hidalgo

AbstractBased on the quantitative analysis of a set of wide-field color—magnitude diagrams reaching the old main sequence-turnoffs, we present new LMC star-formation histories, and their variation with galactocentric distance. Some coherent features are found, together with systematic variations of the star-formation history among the three fields analyzed. We find two main episodes of star formation in all three fields, from 1 to 4 and 7 to 13 Gyr ago, with relatively low star formation around ≃ 4–7 Gyr ago. The youngest age in each field gradually increases with galactocentric radius; in the innermost field, LMC 0514–6503, an additional star formation event younger than 1 Gyr is detected, with star formation declining, however, in the last ≃ 200 Myr. The population is found to be older on average toward the outer part of the galaxy, although star formation in all fields seems to have started around 13 Gyr ago.


2014 ◽  
Vol 10 (S309) ◽  
pp. 99-104
Author(s):  
R. M. González Delgado ◽  
R. Cid Fernandes ◽  
R. García-Benito ◽  
E. Pérez ◽  
A. L. de Amorim ◽  
...  

AbstractWe resolve spatially the star formation history of 300 nearby galaxies from the CALIFA integral field survey to investigate: a) the radial structure and gradients of the present stellar populations properties as a function of the Hubble type; and b) the role that plays the galaxy stellar mass and stellar mass surface density in governing the star formation history and metallicity enrichment of spheroids and the disks of galaxies. We apply the fossil record method based on spectral synthesis techniques to recover spatially and temporally resolved maps of stellar population properties of spheroids and spirals with galaxy mass from 109 to 7×1011 M⊙. The individual radial profiles of the stellar mass surface density (μ⋆), stellar extinction (AV), luminosity weighted ages (〈logage〉L), and mass weighted metallicity (〈log Z/Z⊙〉M) are stacked in seven bins of galaxy morphology (E, S0, Sa, Sb, Sbc, Sc and Sd). All these properties show negative gradients as a sight of the inside-out growth of massive galaxies. However, the gradients depend on the Hubble type in different ways. For the same galaxy mass, E and S0 galaxies show the largest inner gradients in μ⋆; and Andromeda-like galaxies (Sb with log M⋆ (M⊙) ∼ 11) show the largest inner age and metallicity gradients. In average, spiral galaxies have a stellar metallicity gradient ∼ −0.1 dex per half-light radius, in agreement with the value estimated for the ionized gas oxygen abundance gradient by CALIFA. A global (M⋆-driven) and local (μ⋆-driven) stellar metallicity relation are derived. We find that in disks, the stellar mass surface density regulates the stellar metallicity; in spheroids, the galaxy stellar mass dominates the physics of star formation and chemical enrichment.


2009 ◽  
Vol 5 (S262) ◽  
pp. 353-354
Author(s):  
Enrico V. Held ◽  
Eline Tolstoy ◽  
Luca Rizzi ◽  
Mary Cesetti ◽  
Andrew A. Cole ◽  
...  

AbstractWe present the first results of a comprehensive HST study of the star-formation history of Fornax dSph, based on WFPC2 imaging of 7 Fornax fields. Our observations reach the oldest main-sequence turnoffs, allowing us to address fundamental questions of dwarf galaxy evolution, such as the spatial variations in the stellar content, and whether the old stellar population is made up of stars formed in a very early burst or the result of a more continuous star formation.


2019 ◽  
Vol 487 (4) ◽  
pp. 5862-5873 ◽  
Author(s):  
M Bettinelli ◽  
S L Hidalgo ◽  
S Cassisi ◽  
A Aparicio ◽  
G Piotto ◽  
...  

ABSTRACT We present the star formation history (SFH) of the Sculptor dwarf spheroidal galaxy based on deep g, r photometry taken with Dark Energy Camera at the Blanco telescope, focusing our analysis on the central region of the galaxy extended up to ∼3 core radii. We have investigated how the SFH changes radially, subdividing the sampled area into four regions, and have detected a clear trend of star formation. All the SFHs show a single episode of star formation, with the innermost region presenting a longer period of star formation of ∼1.5 Gyr and for the outermost region the main period of star formation is confined to ∼0.5 Gyr. We observe a gradient in the mean age which is found to increase going towards the outer regions. These results suggest that Sculptor continued forming stars after the reionization epoch in its central part, while in the peripheral region, the majority of stars probably formed during the reionization epoch and soon after its end. From our analysis, Sculptor cannot be considered strictly as a fossil of the reionization epoch.


2009 ◽  
Vol 5 (S268) ◽  
pp. 483-488
Author(s):  
Rodolfo Smiljanic ◽  
L. Pasquini ◽  
P. Bonifacio ◽  
D. Galli ◽  
B. Barbuy ◽  
...  

AbstractThe single stable isotope of beryllium is a pure product of cosmic-ray spallation in the ISM. Assuming that the cosmic-rays are globally transported across the Galaxy, the beryllium production should be a widespread process and its abundance should be roughly homogeneous in the early-Galaxy at a given time. Thus, it could be useful as a tracer of time. In an investigation of the use of Be as a cosmochronometer and of its evolution in the Galaxy, we found evidence that in a log(Be/H) vs. [α/Fe] diagram the halo stars separate into two components. One is consistent with predictions of evolutionary models while the other is chemically indistinguishable from the thick-disk stars. This is interpreted as a difference in the star formation history of the two components and suggests that the local halo is not a single uniform population where a clear age-metallicity relation can be defined. We also found evidence that the star formation rate was lower in the outer regions of the thick disk, pointing towards an inside-out formation.


2022 ◽  
Vol 924 (1) ◽  
pp. 32
Author(s):  
Alexa Villaume ◽  
Aaron J. Romanowsky ◽  
Jean Brodie ◽  
Pieter van Dokkum ◽  
Charlie Conroy ◽  
...  

Abstract We use the Keck Cosmic Web Imager integral field unit spectrograph to (1) measure the global stellar population parameters for the ultra-diffuse galaxy (UDG) Dragonfly 44 (DF44) to much higher precision than previously possible for any UDG and (2) for the first time measure spatially resolved stellar population parameters of a UDG. We find that DF44 falls below the mass–metallicity relation established by canonical dwarf galaxies both in and beyond the Local Group. We measure a flat radial age gradient ( m logage = + 0.01 − 0.08 + 0.08 log Gyr kpc−1) and a flat to positive metallicity gradient ( m [ Fe / H ] = + 0.09 − 0.12 + 0.11 dex kpc−1), which are inconsistent with the gradients measured in similarly pressure-supported dwarf galaxies. We also measure a negative [Mg/Fe] gradient ( m [ Mg / Fe ] = − 0.20 − 0.18 + 0.18 ) dex kpc−1 such that the central 1.5 kpc of DF44 has stellar population parameters comparable to metal-poor globular clusters. Overall, DF44 does not have internal properties similar to other dwarf galaxies and is inconsistent with it having been puffed up through a prolonged, bursty star formation history, as suggested by some simulations. Rather, the evidence indicates that DF44 experienced an intense epoch of “inside-out” star formation and then quenched early and catastrophically, such that star formation was cut off more quickly than in canonical dwarf galaxies.


Sign in / Sign up

Export Citation Format

Share Document