scholarly journals Advantages and disadvantages of the animal models v. in vitro studies in iron metabolism: a review

animal ◽  
2013 ◽  
Vol 7 (10) ◽  
pp. 1651-1658 ◽  
Author(s):  
Y. García ◽  
J. Díaz-Castro
2019 ◽  
Vol 14 (6) ◽  
pp. 504-518 ◽  
Author(s):  
Dilcele Silva Moreira Dziedzic ◽  
Bassam Felipe Mogharbel ◽  
Priscila Elias Ferreira ◽  
Ana Carolina Irioda ◽  
Katherine Athayde Teixeira de Carvalho

This systematic review evaluated the transplantation of cells derived from adipose tissue for applications in dentistry. SCOPUS, PUBMED and LILACS databases were searched for in vitro studies and pre-clinical animal model studies using the keywords “ADIPOSE”, “CELLS”, and “PERIODONTAL”, with the Boolean operator “AND”. A total of 160 titles and abstracts were identified, and 29 publications met the inclusion criteria, 14 in vitro and 15 in vivo studies. In vitro studies demonstrated that adipose- derived cells stimulate neovascularization, have osteogenic and odontogenic potential; besides adhesion, proliferation and differentiation on probable cell carriers. Preclinical studies described improvement of bone and periodontal healing with the association of adipose-derived cells and the carrier materials tested: Platelet Rich Plasma, Fibrin, Collagen and Synthetic polymer. There is evidence from the current in vitro and in vivo data indicating that adipose-derived cells may contribute to bone and periodontal regeneration. The small quantity of studies and the large variation on study designs, from animal models, cell sources and defect morphology, did not favor a meta-analysis. Additional studies need to be conducted to investigate the regeneration variability and the mechanisms of cell participation in the processes. An overview of animal models, cell sources, and scaffolds, as well as new perspectives are provided for future bone and periodontal regeneration study designs.


2018 ◽  
Vol 2018 ◽  
pp. 1-22 ◽  
Author(s):  
Melissa Lo Monaco ◽  
Greet Merckx ◽  
Jessica Ratajczak ◽  
Pascal Gervois ◽  
Petra Hilkens ◽  
...  

Due to the restricted intrinsic capacity of resident chondrocytes to regenerate the lost cartilage postinjury, stem cell-based therapies have been proposed as a novel therapeutic approach for cartilage repair. Moreover, stem cell-based therapies using mesenchymal stem cells (MSCs) or induced pluripotent stem cells (iPSCs) have been used successfully in preclinical and clinical settings. Despite these promising reports, the exact mechanisms underlying stem cell-mediated cartilage repair remain uncertain. Stem cells can contribute to cartilage repair via chondrogenic differentiation, via immunomodulation, or by the production of paracrine factors and extracellular vesicles. But before novel cell-based therapies for cartilage repair can be introduced into the clinic, rigorous testing in preclinical animal models is required. Preclinical models used in regenerative cartilage studies include murine, lapine, caprine, ovine, porcine, canine, and equine models, each associated with its specific advantages and limitations. This review presents a summary of recentin vitrodata and fromin vivopreclinical studies justifying the use of MSCs and iPSCs in cartilage tissue engineering. Moreover, the advantages and disadvantages of utilizing small and large animals will be discussed, while also describing suitable outcome measures for evaluating cartilage repair.


2011 ◽  
Vol 2 (2) ◽  
pp. 129-134 ◽  
Author(s):  
Himanshu Arora ◽  
Anil Nafria ◽  
Anup Kanase

ABSTRACT Development of an optimal interface between bone and orthopedic or dental implants has taken place for many years. In order to determine whether a newly developed implant material conforms to the requirements of biocompatibility, mechanical stability and safety, it must undergo rigorous testing both in vitro and in vivo. Results from in vitro studies can be difficult to extrapolate to the in vivo situation. For this reason the use of animal models is often an essential step in the testing of orthopedic and dental implants prior to clinical use in humans. This review discusses the reasons, the importance, and the research carried out in rabbits in our quest to develop a dental implant ideally suited for human bone.


Biomaterials ◽  
2004 ◽  
Vol 25 (9) ◽  
pp. 1487-1495 ◽  
Author(s):  
Pieter Buma ◽  
Willem Schreurs ◽  
Nico Verdonschot

Author(s):  
Yoko Ambrosini ◽  
Dana Borcherding ◽  
Anumantha Kanthasamy ◽  
Hyun Jung Kim ◽  
Albert Jergens ◽  
...  

Identifying appropriate animal models is critical in developing translatable in vitro and in vivo systems for therapeutic development and investigating disease pathophysiology. These animal models should have direct biological and translational relevance to the underlying disease they are supposed to mimic. Aging dogs naturally develop a cognitive decline in many aspects including learning and memory, but also exhibit human-like individual variability in the aging process. Neurodegenerative processes that can be observed in both human and canine brains include the progressive accumulation of β-amyloid (Aβ) found as diffuse plaques in the prefrontal cortex, including the gyrus proreus, the hippocampus, and in the cerebral vasculature. A growing body of epidemiological data shows that human patients with neurodegenerative diseases have concurrent intestinal lesions, and histopathological changes in the gastrointestinal (GI) tract occurs decades that evolve before neurodegenerative changes. Gut microbiome alterations also have been observed in many neurodegenerative diseases including Alzheimer’s and Parkinson’s diseases, and inflammatory CNS diseases. Interestingly, only recently has the dog gut microbiome been recognized to more closely resemble in composition and in functional overlap with the human gut microbiome as compared to rodent models. This article aims to review the physiology of the gut-brain axis (GBA), and its involvement with neurodegenerative diseases in dogs and humans. Additionally, we outline the advantages and disadvantages of traditional in vitro and in vivo models and discuss future research directions investigating major human neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases using dogs.


2019 ◽  
Vol 26 (19) ◽  
pp. 3439-3456 ◽  
Author(s):  
Laura Vergani

Background: Fatty liver, or steatosis, is a condition of excess accumulation of lipids, mainly under form of triglycerides (TG), in the liver, and it is the hallmark of non-alcoholic fatty liver disease (NAFLD). NAFLD is the most common liver disorder world-wide and it has frequently been associated with obesity, hyperlipidemia and insulin resistance. Free fatty acids (FA) are the major mediators of hepatic steatosis; patients with NAFLD have elevated levels of circulating FA that correlate with disease severity. Methods: Steatosis is a reversible condition that can be resolved with changed behaviors, or that can progress towards more severe liver damages such as steatohepatitis (NASH), fibrosis and cirrhosis. In NAFLD, FA of exogenous or endogenous origin accumulate in the hepatocytes and trigger liver damages. Excess TG are stored in cytosolic lipid droplets (LDs) that are dynamic organelles acting as hubs for lipid metabolism. Results: In the first part of this review, we briefly reassumed the main classes of FA and their chemical classification as a function of the presence and number of double bonds, their metabolic pathways and effects on human health. Then, we summarized the main genetic and diet-induced animal models of NAFLD, as well as the cellular models of NAFLD. Conclusions: In recent years, both the diet-induced animal models of NAFLD as well as the cellular models of NAFLD have found ever more application to investigate the mechanisms involved in NAFLD, and we referred to their advantages and disadvantages.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Zita C. Bendahan ◽  
Lina M. Escobar ◽  
Jaime E. Castellanos ◽  
María C. González-Carrera

Abstract Background Folate is a naturally occurring, water-soluble B vitamin. The synthetic form of this compound is folic acid (FA), the deficiency of which is linked to neural tube disorders (NTD), which can be prevented by consuming it before, or during the early months of, pregnancy. However, the effect of FA on oral cleft formation remains controversial. The aim of the present study was to review the evidence concerning the effect of FA on the formation of cleft lip and palate (CLP) in both animals and humans, as well as its impact on different cell types. A search was conducted on various databases, including MEDLINE, EMBASE, and Central, for articles published until January 2020. Main body Current systematic reviews indicate that FA, alone or in combination with other vitamins, prevents NTD; however, there is no consensus on whether its consumption can prevent CLP formation. Conversely, the protective effect of FA on palatal cleft (CP) induction has been inferred from animal models; additionally, in vitro studies enumerate a cell-type and dose-dependent effect of FA on cell viability, proliferation, and differentiation, hence bolstering evidence from epidemiological studies. Conclusions Meta-analysis, animal models, and in vitro studies demonstrated the protective effect of FA against isolated CP; however, the heterogeneity of treatment protocols, doses, and FA administration method, as well as the different cell types used in in vitro studies, does not conclusively establish whether FA prevents CLP formation.


Sign in / Sign up

Export Citation Format

Share Document