The effect of forage grinding and cutting height of urea treated whole crop wheat on the milk production and diet digestibility in dairy cows

2002 ◽  
Vol 2002 ◽  
pp. 13-13
Author(s):  
M.A. Jackson ◽  
L.A. Sinclair ◽  
R. Readman ◽  
J. Huntington

It has previously been demonstrated that feeding urea treated whole crop wheat to dairy cows results in a significant increase in dry matter intake but has little effect on milk yield (Sutton et al, 1997). Part of the reason behind this lack of response has been attributed to a decrease in digestibility, particularly that of starch. A forage mill has recently been developed which allow the grains to be ground prior to ensiling and potentially increase their digestibility. An alternative way to increase the energy value of whole crop wheat is to increase cutting/stubble height. Work by Weller et al, (1995) demonstrated an increase in calculated ME from 10.6 to 11.2 MJ/kg DM by increasing stubble height from 10cm to 40cm. The objective of the current experiment was therefore to determine the effects of forage processing (grinding) and cutting height at harvest of urea-treated whole crop wheat on the intake, milk production and diet digestibility in dairy cows.

2005 ◽  
Vol 2005 ◽  
pp. 22-22
Author(s):  
A.J. Bond ◽  
R.J. Readman ◽  
J.A. Huntington ◽  
L.A. Sinclair

The development of a forage processor that grinds the grains in whole-crop wheat (WCW) prior to ensiling has been shown to improve whole tract digestibility of the starch component and improve the efficiency of forage utilisation (Jackson et al. 2004). This allows wheat to be harvested over a much wider harvest window than was previously possible. Further work (Bond et al., 2004) demonstrated that animals fed processed, urea-treated WCW harvested at 700 g dry matter (DM) per kg had a significantly higher milk yield than those fed fermented WCW harvested at approximately 450 g DM/kg, or urea-treated WCW harvested at approximately 850 g DM/kg. Previously, processed, urea-treated WCW for dairy cows has been included at 0.67 of the forage DM intake, although, the optimal inclusion rate of processed WCW is unclear. The objective of the current experiment was to investigate the effect of rate of inclusion of processed, urea-treated WCW on the performance and apparent digestibility in dairy cows.


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 104
Author(s):  
Shulin Liang ◽  
Chaoqun Wu ◽  
Wenchao Peng ◽  
Jian-Xin Liu ◽  
Hui-Zeng Sun

The objective of this study was to evaluate the feasibility of using the dry matter intake of first 2 h after feeding (DMI-2h), body weight (BW), and milk yield to estimate daily DMI in mid and late lactating dairy cows with fed ration three times per day. Our dataset included 2840 individual observations from 76 cows enrolled in two studies, of which 2259 observations served as development dataset (DDS) from 54 cows and 581 observations acted as the validation dataset (VDS) from 22 cows. The descriptive statistics of these variables were 26.0 ± 2.77 kg/day (mean ± standard deviation) of DMI, 14.9 ± 3.68 kg/day of DMI-2h, 35.0 ± 5.48 kg/day of milk yield, and 636 ± 82.6 kg/day of BW in DDS and 23.2 ± 4.72 kg/day of DMI, 12.6 ± 4.08 kg/day of DMI-2h, 30.4 ± 5.85 kg/day of milk yield, and 597 ± 63.7 kg/day of BW in VDS, respectively. A multiple regression analysis was conducted using the REG procedure of SAS to develop the forecasting models for DMI. The proposed prediction equation was: DMI (kg/day) = 8.499 + 0.2725 × DMI-2h (kg/day) + 0.2132 × Milk yield (kg/day) + 0.0095 × BW (kg/day) (R2 = 0.46, mean bias = 0 kg/day, RMSPE = 1.26 kg/day). Moreover, when compared with the prediction equation for DMI in Nutrient Requirements of Dairy Cattle (2001) using the independent dataset (VDS), our proposed model shows higher R2 (0.22 vs. 0.07) and smaller mean bias (−0.10 vs. 1.52 kg/day) and RMSPE (1.77 vs. 2.34 kg/day). Overall, we constructed a feasible forecasting model with better precision and accuracy in predicting daily DMI of dairy cows in mid and late lactation when fed ration three times per day.


1999 ◽  
Vol 133 (4) ◽  
pp. 419-425 ◽  
Author(s):  
Y. UNAL ◽  
P. C. GARNSWORTHY

Dry matter intake is one of the major factors limiting milk production in dairy cows, although the quantity of food consumed by an individual cow when housed and fed as part of a group is rarely known. Such information would permit more precise ration formulation, concentrate allocation and selection of cows according to efficiency of milk production. Alkanes have been used with sheep and cattle to estimate feed intake under grazing conditions and could provide a technique for measuring intake in housed dairy cows. The purpose of this study was to examine alkanes C32 and C36, in combination with alkane C33, as indigestible markers for estimating intake of housed dairy cows fed on different diets under experimental and commercial conditions. Three experiments were conducted with hay-based diets (Expt 1), silage only diets (Expt 2) and a diet consisting of a silage-based basal ration plus concentrates (Expt 3). Animals were dosed once daily with C32 and C36, either on filter papers (Expts 1 and 2) or as part of a specially prepared concentrate (Expt 3). Faecal recoveries of alkanes ranged from 0·88 to 0·99. Over the range of intakes found in the three experiments (6–24 kg DM/d), the r2 values for estimated versus actual dry matter intakes ranged from 0·81 to 0·99. It is concluded that alkanes could provide a useful technique for estimating intake in dairy cows housed and fed in groups.


2010 ◽  
Vol 55 (No. 11) ◽  
pp. 468-478 ◽  
Author(s):  
K. Poláková ◽  
V. Kudrna ◽  
A. Kodeš ◽  
B. Hučko ◽  
Z. Mudřík

The main aim of this study was to investigate experimentally the effect of different composition of non-structural carbohydrates (NFC) in prepartum feed rations administered to high-yielding dairy cows at a high concentration of NFC in the diet on dry matter intake both before and after parturition and on subsequent milk performance, body condition and physiological traits of rumen fluid and blood. Thirty-six high-yielding dairy cows were allocated into one of the three well-balanced groups (K, O, and C), and each group received a different feeding rations. Feeding rations differed in non-structural carbohydrate (NFC) structure. The "K" (control) group received a feeding ration with NFC in the form of maize starch in particular, while the feeding rations of the other two (experimental) groups contained either (besides maize starch) saccharose from dried sugar beet (the "O" group) or a dominant amount of NFC was in the form of saccharose (the "C" group). After calving, all dairy cows were given the same feeding ration from the first day after parturition. The experiment was conducted for 21 days before and 50 days after calving. FR in the form of total mixed ration was offered ad libitum. Dry matter intake, milk performance, body condition, live weight, and blood and rumen parameters were recorded for the duration of the experiment. Average daily dry matter intake before calving was highest in the "K" group (14.32 kg per head). Differences among groups were statistically significant (P < 0.05). Prepartum dry matter consumption dropped as the rate of saccharose in the diet of cows increased. Dry matter consumption levelled off after calving. Milk yield was also highest in the "K" group (43.71 kg/head/day), but fatness of milk and thus the production of fat corrected milk were lowest in this group. The highest milk fat content (4.10%) and fat corrected milk production (44.03 kg/head/day) were recorded in the "C" group, whereas the highest milk protein concentration was found in the milk of the "O" group. The composition of NFC affected dry matter intake before parturition, but these concentrations did not significantly affect dry matter intake, milk yield, milk composition, live weight, body condition or blood serum and rumen fluid parameters after calving


1999 ◽  
Vol 39 (8) ◽  
pp. 923 ◽  
Author(s):  
P. J. Moate ◽  
D. E. Dalley ◽  
J. R. Roche ◽  
C. Grainger

Summary. The effect of herbage allowance (20, 30, 40, 50, 60 and 70 kg DM/cow. day) on the consumption of nutrients from herbage and milk production by cows in early lactation, was examined. The experiment was conducted on rainfed perennial ryegrass pastures in September and October 1997 in south-eastern Victoria, Australia. The herbage on offer comprised 64% perennial ryegrass, 21% other grasses, 1% white clover, 5% weeds and 9% dead material on a dry matter (DM) basis. The average pregrazing herbage height was 13 cm, at an estimated pregrazing herbage mass of 3.6 t DM/ha. The herbage on offer was of high quality containing 11.6 MJ metabolisable energy/kg DM, 202 g crude protein/kg DM and 525 g neutral detergent fibre/kg DM. Concentrations of calcium, magnesium, sodium, potassium, phosphorus, sulfur and chloride were 4.4, 2.2, 4.4, 31.2, 3.5, 2.7 and 11.4 g/kg DM, respectively. As daily herbage allowance per cow increased, dry matter intake increased curvilinearly (P<0.01) from 11.2 to 18.7 kg DM/cow. day. This was associated with a decrease in utilisation of herbage from 54 to 26% and an increase in milk production from 25.9 to 29.1 kg/cow. day. The cows on all treatments grazed for less than 8.7 h/day. The increase in intake was achieved by an increase in the rate of herbage intake from 1.5 to 2.2 kg DM/h for herbage allowances of 20 and 70 kg/cow.day, respectively. Irrespective of herbage allowance, cows selected a diet that was approximately 10% higher in in vitro dry matter digestibility and 30% higher in crude protein than that in the herbage on offer. The neutral detergent fibre content of the herbage selected was lower (P<0.05) than that on offer. The herbage consumed contained more (P<0.05) magnesium, potassium and sulfur, the same amount of calcium and phosphorus and less (P<0.05) sodium and chloride than the herbage on offer. For rainfed perennial pastures in spring, herbage allowance is an important factor in determining voluntary feed intake and production of dairy cows. To achieve 30 L from herbage, without supplementation, high herbage allowances are required. The increase in herbage intake, with increasing herbage allowance, resulted from an increase in rate of dry matter intake and not an increase in grazing time. No relationship was evident between herbage allowance and the selection differentials for in vitro dry matter digestibility, crude protein and neutral detergent fibre. Selection differentials for rainfed perennial pastures in spring are similar to those reported for irrigated perennial pastures in northern Victoria in spring and autumn. When determining nutrient requirements it is important to consider the interaction between herbage intake and nutrient concentration in the herbage.


Author(s):  
Dagnachew Hailemariam ◽  
Ghader Manafiazar ◽  
John A. Basarab ◽  
Paul Stothard ◽  
Filippo Miglior ◽  
...  

This study compared the different residual feed intake (RFI) categories of lactating Holsteins with respect to methane emission, dry matter intake (kg), milk somatic cell count (SCC, 103/mL) and β-hydroxybutyrate (BHB, mmol/L). RFI was calculated in 131 lactating Holstein cows that were then categorized into –RFI (RFI<0) vs. +RFI (RFI>0) and low (RFI<-0.5 SD) vs. high RFI (RFI>0.5 SD) groups. Milk traits were recorded in 131 cows while CH4 and CO2 were measured in 83. Comparisons of –RFI vs. +RFI and low vs. high RFI showed 7.8% (22.3±0.40 vs. 24.2±0.39) and 12.9% (21.1±0.40 vs. 24.2±0.45) decrease (P<0.05) in DMI of –RFI and low RFI groups, respectively. Similarly, –RFI and low RFI cows had lower (P<0.05) CH4 (g/d) by 9.7% (343.5±11.1 vs. 380.4±10.9) and 15.5% (332.5±12.9 vs. 393.5±12.6) respectively. Milk yield was not different (P>0.05) in –RFI vs. +RFI and low vs. high comparisons. The –RFI and low RFI cows had lower (P<0.05) SCC in –RFI vs. +RFI and low RFI vs. high RFI comparisons. BHB was lower (P<0.05) in low RFI compared to the high RFI group. Low RFI dairy cows consumed less feed, emitted less methane (g/d), and had lower milk SCC and BHB without differing in milk yield.


Sign in / Sign up

Export Citation Format

Share Document