scholarly journals Non-structural carbohydrates in the nutrition of high-yielding dairy cows during a transition period

2010 ◽  
Vol 55 (No. 11) ◽  
pp. 468-478 ◽  
Author(s):  
K. Poláková ◽  
V. Kudrna ◽  
A. Kodeš ◽  
B. Hučko ◽  
Z. Mudřík

The main aim of this study was to investigate experimentally the effect of different composition of non-structural carbohydrates (NFC) in prepartum feed rations administered to high-yielding dairy cows at a high concentration of NFC in the diet on dry matter intake both before and after parturition and on subsequent milk performance, body condition and physiological traits of rumen fluid and blood. Thirty-six high-yielding dairy cows were allocated into one of the three well-balanced groups (K, O, and C), and each group received a different feeding rations. Feeding rations differed in non-structural carbohydrate (NFC) structure. The "K" (control) group received a feeding ration with NFC in the form of maize starch in particular, while the feeding rations of the other two (experimental) groups contained either (besides maize starch) saccharose from dried sugar beet (the "O" group) or a dominant amount of NFC was in the form of saccharose (the "C" group). After calving, all dairy cows were given the same feeding ration from the first day after parturition. The experiment was conducted for 21 days before and 50 days after calving. FR in the form of total mixed ration was offered ad libitum. Dry matter intake, milk performance, body condition, live weight, and blood and rumen parameters were recorded for the duration of the experiment. Average daily dry matter intake before calving was highest in the "K" group (14.32 kg per head). Differences among groups were statistically significant (P < 0.05). Prepartum dry matter consumption dropped as the rate of saccharose in the diet of cows increased. Dry matter consumption levelled off after calving. Milk yield was also highest in the "K" group (43.71 kg/head/day), but fatness of milk and thus the production of fat corrected milk were lowest in this group. The highest milk fat content (4.10%) and fat corrected milk production (44.03 kg/head/day) were recorded in the "C" group, whereas the highest milk protein concentration was found in the milk of the "O" group. The composition of NFC affected dry matter intake before parturition, but these concentrations did not significantly affect dry matter intake, milk yield, milk composition, live weight, body condition or blood serum and rumen fluid parameters after calving

2010 ◽  
Vol 55 (No. 1) ◽  
pp. 468-478 ◽  
Author(s):  
K. Poláková ◽  
V. Kudrna ◽  
A. Kodeš ◽  
B. Hučko ◽  
Z. Mudřík

The main aim of this study was to investigate experimentally the effect of different composition of non-structural carbohydrates (NFC) in prepartum feed rations administered to high-yielding dairy cows at a high concentration of NFC in the diet on dry matter intake both before and after parturition and on subsequent milk performance, body condition and physiological traits of rumen fluid and blood. Thirty-six high-yielding dairy cows were allocated into one of the three well-balanced groups (K, O, and C), and each group received a different feeding rations. Feeding rations differed in non-structural carbohydrate (NFC) structure. The "K" (control) group received a feeding ration with NFC in the form of maize starch in particular, while the feeding rations of the other two (experimental) groups contained either (besides maize starch) saccharose from dried sugar beet (the "O" group) or a dominant amount of NFC was in the form of saccharose (the "C" group). After calving, all dairy cows were given the same feeding ration from the first day after parturition. The experiment was conducted for 21 days before and 50 days after calving. FR in the form of total mixed ration was offered ad libitum. Dry matter intake, milk performance, body condition, live weight, and blood and rumen parameters were recorded for the duration of the experiment. Average daily dry matter intake before calving was highest in the "K" group (14.32 kg per head). Differences among groups were statistically significant (P < 0.05). Prepartum dry matter consumption dropped as the rate of saccharose in the diet of cows increased. Dry matter consumption levelled off after calving. Milk yield was also highest in the "K" group (43.71 kg/head/day), but fatness of milk and thus the production of fat corrected milk were lowest in this group. The highest milk fat content (4.10%) and fat corrected milk production (44.03 kg/head/day) were recorded in the "C" group, whereas the highest milk protein concentration was found in the milk of the "O" group. The composition of NFC affected dry matter intake before parturition, but these concentrations did not significantly affect dry matter intake, milk yield, milk composition, live weight, body condition or blood serum and rumen fluid parameters after calving.


1983 ◽  
Vol 36 (3) ◽  
pp. 321-334 ◽  
Author(s):  
D. R. Neilson ◽  
C. T. Whittemore ◽  
M. Lewis ◽  
J. C. Alliston ◽  
D. J. Roberts ◽  
...  

ABSTRACTUnderstanding the relationships between food intake, milk output and body condition in high-yielding dairy cows is crucial in determining suitable management strategies. During two winter feeding periods 38 and 37 cows were individually fed, to appetite, complete diets which on average contained 11·7 MJ metabolizable energy per kg dry matter and comprised grass silage, concentrate meal and brewers' grains (draff). The groups' mean 305-day yield was 7 240 kg (s.d. 1 281) with 42 g (s.d. 4·3) fat per kg. Regression analysis was carried out to describe dry-matter intake both for 26 weeks post calving and for four successive 6-week periods from calving. The final equations, which had a residual s.d. of 0·07 to 0·10 of the observed intake, included milk yield, cow size and a measure of body-condition change. The cows were divided into three groups (high, medium and low) on two criteria: (1) mean milk yield (MJ/day) during the first 26 weeks of lactation and (2) post-calving backfat index determined ultrasonically. Differences were found between milk-yield groups from gross efficiency (milk yield (MJ)/energy intake (MJ metabolizable energy)) (P < 0·001), mean metabolizable energy intake (MJ/day) (P < 0·01), dry-matter intake as a proportion of live weight (P < 0·05), and post calving live weight (kg) (P < 0·05). Differences were found between backfat-index groups for maximum backfat loss and loss to day 42 (P < 0·001); also for mean live weight during the 26 weeks and post calving live weight (P < 0·001), dry-matter intake as a proportion of live weight (P < 0·05) and lactation number (P < 0·05). Interactions were found between the milk yield groups and backfat groups for milk yield (P < 0·01) and gross efficiency (P < 0·05) with the fattest group containing the highest and lowest yields and efficiencies.


2002 ◽  
Vol 2002 ◽  
pp. 45-45
Author(s):  
S.C. Liefers ◽  
R.F. Veerkamp ◽  
M.F.W. te Pas ◽  
C. Delavaud ◽  
Y. Chilliard ◽  
...  

Since evidence is present that genetic correlations between start of luteal activity and energy balance, milk yield and live weight exist (Veerkamp et al., 2000), it could be hypothesised that polymorphisms at the leptin gene locus might play a role. The first objective of this study was to associate plasma leptin levels during late pregnancy with genetic differences in the leptin gene. The second objective was to relate these polymorphisms with variations in energy balance, milk production, dry matter intake and fertility.


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 104
Author(s):  
Shulin Liang ◽  
Chaoqun Wu ◽  
Wenchao Peng ◽  
Jian-Xin Liu ◽  
Hui-Zeng Sun

The objective of this study was to evaluate the feasibility of using the dry matter intake of first 2 h after feeding (DMI-2h), body weight (BW), and milk yield to estimate daily DMI in mid and late lactating dairy cows with fed ration three times per day. Our dataset included 2840 individual observations from 76 cows enrolled in two studies, of which 2259 observations served as development dataset (DDS) from 54 cows and 581 observations acted as the validation dataset (VDS) from 22 cows. The descriptive statistics of these variables were 26.0 ± 2.77 kg/day (mean ± standard deviation) of DMI, 14.9 ± 3.68 kg/day of DMI-2h, 35.0 ± 5.48 kg/day of milk yield, and 636 ± 82.6 kg/day of BW in DDS and 23.2 ± 4.72 kg/day of DMI, 12.6 ± 4.08 kg/day of DMI-2h, 30.4 ± 5.85 kg/day of milk yield, and 597 ± 63.7 kg/day of BW in VDS, respectively. A multiple regression analysis was conducted using the REG procedure of SAS to develop the forecasting models for DMI. The proposed prediction equation was: DMI (kg/day) = 8.499 + 0.2725 × DMI-2h (kg/day) + 0.2132 × Milk yield (kg/day) + 0.0095 × BW (kg/day) (R2 = 0.46, mean bias = 0 kg/day, RMSPE = 1.26 kg/day). Moreover, when compared with the prediction equation for DMI in Nutrient Requirements of Dairy Cattle (2001) using the independent dataset (VDS), our proposed model shows higher R2 (0.22 vs. 0.07) and smaller mean bias (−0.10 vs. 1.52 kg/day) and RMSPE (1.77 vs. 2.34 kg/day). Overall, we constructed a feasible forecasting model with better precision and accuracy in predicting daily DMI of dairy cows in mid and late lactation when fed ration three times per day.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2401
Author(s):  
Xiaoge Sun ◽  
Yue Wang ◽  
Erdan Wang ◽  
Shu Zhang ◽  
Qianqian Wang ◽  
...  

High-yield dairy cows with high-concentrate diets are more prone to experiencing health problems associated with rumen microbial imbalance. This study assessed the effects of Saccharomyces cerevisiae culture (SC), a food supplement, on ruminal pH, volatile fatty acid (VFA), inflammatory cytokines, and performance of high-yield dairy cows. Forty Holstein cows with similar characteristics (e.g., milk yield, days of milk, and parity) were randomly divided into two groups: an experimental group fed the basal ration supplemented with the SC of 100 g of SC per cow per day (hour, SC group), and a control group fed the same basal ration diet without SC (i.e., CON group). On average, the supplementation of SC started at 73 days of lactation. The experimental period lasted approximately 70 days (from 18 January to 27 March 2020), including 10 days for dietary adaptation. Milk yield was recorded daily. Rumen fluid and milk samples were collected after 2 h of feeding in the morning of day 0, 15, 30, and 60. The data showed that rumen pH increased (p < 0.05) when cows were provided with SC. On average, the cows in the SC group produced 1.36 kg (p < 0.05) more milk per day than those in the CON group. Milk fat content of cows in the SC group was also higher (4.11% vs. 3.96%) (p < 0.05). Compared with the CON group, the concentration of acetic acid in the rumen fluid of dairy cows in the SC group was significantly higher (p < 0.05). There were no differences (p > 0.05) found in milk protein content and propionic acid between groups. The SC group had a tendency increase in butyric acid (p = 0.062) and total VFA (p = 0.058). The result showed that SC supplementation also enhanced the ratio between acetic and propionic. Most of the mean inflammatory cytokine (IL-2, IL-6, γ-IFN, and TNF-α) concentrations (p < 0.05) of the SC group were lower than CON group. This study demonstrated that high-yield cows receiving supplemental SC could produce more milk with higher fat content, have higher rumen acetate, and potentially less inflammatory cytokines.


1981 ◽  
Vol 32 (2) ◽  
pp. 171-178 ◽  
Author(s):  
F. J. Gordon

ABSTRACTA randomized block experiment was used to assess the effects of wilting of herbage prior to ensiling. Three silages, each a composite of three harvests taken over the season, were prepared by ensiling herbage as unwilted, medium-wilted or high-wilted material with mean dry-matter contents in the resulting silages of 192, 254 and 455g/kg respectively. The silages were ensiled in bunker silos using the same harvesting machinery and with formic acid applied at the rate of 2 81/t of herbage. The silages were offered to 81 January- and February-calving cows from the 8th day post partum until going to pasture on 27 April, with a mean period on treatmen t of 92 days. In addition, all animals received a fixed concentrate allowance of 7·6 kg/day. Wilting increased silage dry-matter intake, the mean intakes being 9·2, 9·4 and 10·0kg/day for the unwilted, medium-wilted and high-wilted material respectively, but resulted in a significant depression in milk yield, with the yields obtained during the final 14 days on treatment being 23·6, 21 -8 and 21·5kg/day respectively. Milk composition, live weight, body condition, total ration digestibility and nitrogen-balance data are also presented.


Sign in / Sign up

Export Citation Format

Share Document