Effect of date of mating and housing on lamb growth, adipose tissue deposition and plasma leptin concentrations

2002 ◽  
Vol 2002 ◽  
pp. 86-86
Author(s):  
S. Pearce ◽  
A. Mostyn ◽  
E. Genever ◽  
D.H. Keisler ◽  
R. Webb ◽  
...  

In lambs, the rapid increase in heat production after birth is due to initiation of nonshivering thermogenesis in brown adipose tissue (BAT). This occurs in conjunction with an increase in amount and activity of BAT specific uncoupling protein 1 (UCP1) (Clarke et al. 1997). UCP1 abundance and activity is low in fetal life but, within twelve hours of birth, there is an increase in the thermogenic activity of BAT and mRNA for UCP1. This ontogeny of UCP1 mRNA in BAT is very similar that of leptin, which is first detectable in the sheep fetus at 90 days gestation in fetal adipose tissue, its expression then increases up to term at 147 days (Yuen et al 1999). Leptin is a hormone which is thought to play a physiological role is in energy balance, it is primarily produced by white adipose tissue although there is evidence for its production in both brown adipose tissue and the placenta. Lambs born in the autumn are known to be smaller than those born in the spring (McCoard et al. 1997). It is not known if moderate changes in date of mating can influence birth weight or adipose tissue development. The present study aimed to determine whether date of mating could influence lamb birth weight, the abundance of BAT, UCP1, plasma leptin.

1994 ◽  
Vol 302 (3) ◽  
pp. 695-700 ◽  
Author(s):  
C Manchado ◽  
P Yubero ◽  
O Viñas ◽  
R Iglesias ◽  
F Villarroya ◽  
...  

CCAAT/enhancer-binding protein (C/EBP) alpha mRNA and its protein products C/EBP alpha and 30 kDa C/EBP alpha are expressed in rat brown-adipose tissue. Results also demonstrate the expression of C/EBP beta mRNA and its protein products C/EBP beta and liver inhibitory protein (LIP) in the tissue. The abundance of C/EBP alpha and C/EBP beta proteins in adult brown fat is similar to that found in adult liver. However, the expression of C/EBP alpha and C/EBP beta is specifically regulated in brown fat during development. C/EBP alpha, 30 kDa C/EBP alpha, C/EBP beta and LIP content is several-fold higher in fetal brown fat than in the adult tissue, or liver at any stage of development. Peak values are attained in late fetal life, in concurrence with the onset of transcription of the uncoupling protein (UCP) gene, the molecular marker of terminal brown-adipocyte differentiation. When adult rats are exposed to a cold environment, which is a physiological stimulus of brown-adipose tissue hyperplasia and UCP gene expression, a specific rise in C/EBP beta expression with respect to C/EBP alpha, 30 kDa C/EBP alpha and LIP is observed. Present data suggest that the C/EBP family of transcription factors has an important role in the development and terminal differentiation of brown-adipose tissue.


1998 ◽  
Vol 275 (2) ◽  
pp. C496-C504 ◽  
Author(s):  
Petr Jezek ◽  
Jirí Borecky

The physiological role of monocarboxylate transport in brown adipose tissue mitochondria has been reevaluated. We studied pyruvate, α-ketoisovalerate, α-ketoisocaproate, and phenylpyruvate uniport via the uncoupling protein (UCP1) as a GDP-sensitive swelling in K+ salts induced by valinomycin or by monensin and carbonyl cyanide- p-(trifluoromethoxy)phenylhydrazone in Na+ salts. We have demonstrated that this uniport is inhibited by fatty acids. GDP inhibition in K+ salts was not abolished by an uncoupler, indicating a negligible monocarboxylic acid penetration via the lipid bilayer. In contrast, the electroneutral pyruvate uptake (swelling in ammonium pyruvate or potassium pyruvate induced by change in pH) mediated by the pyruvate carrier was inhibited by its specific inhibitor α-cyano-4-hydroxycinnamate but not by fatty acids. Moreover, α-cyano-4-hydroxycinnamate enhanced the energization of brown adipose tissue mitochondria, which was monitored fluorometrically by 2-(4-dimethylaminostyryl)-1-methylpyridinium iodide and safranin O. Consequently, we suggest that UCP1 might participate in futile cycling of unipolar ketocarboxylates under certain physiological conditions while expelling these anions from the matrix. The cycle is completed on their return via the pyruvate carrier in an H+ symport mode.


2012 ◽  
Vol 302 (1) ◽  
pp. R118-R125 ◽  
Author(s):  
Naoya Kitao ◽  
Masaaki Hashimoto

Brown adipose tissue (BAT) is thought to play a significant physiological role during arousal when body temperature rises from the extremely low body temperature that occurs during hibernation. The dominant pathway of BAT thermogenesis occurs through the β3-adrenergic receptor. In this study, we investigated the role of the β3-adrenergic system in BAT thermogenesis during arousal from hibernation both in vitro and in vivo. Syrian hamsters in the hibernation group contained BAT that was significantly greater in overall mass, total protein, and thermogenic uncoupling protein-1 than BAT from the warm-acclimated group. Although the ability of the β3-agonist CL316,243 to induce BAT thermogenesis at 36°C was no different between the hibernation and warm-acclimated groups, its maximum ratio over the basal value at 12°C in the hibernation group was significantly larger than that in the warm-acclimated group. Forskolin stimulation at 12°C produced equivalent BAT responses in these two groups. In vivo thermogenesis was assessed with the arousal time determined by the time course of BAT temperature or heart rate. Stimulation of BAT by CL316,243 significantly shortened the time of arousal from hibernation compared with that induced by vehicle alone, and it also induced arousal in deep hibernating animals. The β3-antagonist SR59230A inhibited arousal from hibernation either in part or completely. These results suggest that BAT in hibernating animals has potent thermogenic activity with a highly effective β3-receptor mechanism at lower temperatures.


1992 ◽  
Vol 15 ◽  
pp. 174-175
Author(s):  
L. Clarke ◽  
S. van de Waal ◽  
M. A. Lomax ◽  
M. E. Symonds

In the ovine foetus brown adipose tissue (BAT) is mainly found in the perirenal region and grows rapidly relative to body weight between 70 to 120 days of gestation (Alexander, 1978). After this stage only a small amount of BAT growth occurs in comparison with that of the whole foetus, and in the case of undernutrition may decline (Alexander, 1978). Maternal cold stress, induced by winter shearing twin-bearing pregnant ewes 8 weeks before parturition improves lamb birth weight and lamb growth rate independently of effects on maternal food intake (Symonds, Bryant and Lomax, 1986 and 1990). At the same time this can stimulate the in vivo capacity for non-shivering thermogenesis in newborn lambs (Stott and Slee, 1985). The following study extends these findings by investigating the extent to which changing the maternal metabolic environment influences BAT development over the final month of gestation.Thirty-two Bluefaced Leicester × Swaledale ewes were housed individually at ambient temperature (−6 to 19°C) 6 weeks prior to lambing and 2 weeks later 15 ewes were shorn. Ewes were offered daily a diet comprising 200 g barley concentrate and 1 kg chopped hay. Between 116 and 145 days of gestation and within 2 h of birth ewes were humanely slaughtered with an overdose of barbiturate and foetal or neonatal perirenal BAT sampled, born from shorn or unshorn ewes. The thermogenic capacity of BAT was assessed by guanosine-5′-diphosphate (GDP) binding to uncoupling protein in mitochondrial preparations (Cooper, Dascombe, Rothwell and Vale, 1989) and the amount of mitochondrial protein measured from cytochrome Coxidase activity.


2001 ◽  
Vol 60 (2) ◽  
pp. 187-194 ◽  
Author(s):  
A. Mostyn ◽  
D. H. Keisler ◽  
R. Webb ◽  
T. Stephenson ◽  
M. E. Symonds

Leptin is a 16 kDa hormone which has been shown to have a major physiological role in the control of energy balance. Leptin is produced primarily in white adipose tissue, although there is evidence for its production in brown adipose tissue (BAT) and the placenta. BAT is critically important for the initiation of non-shivering thermogenesis in the newborn through the BAT-specific uncoupling protein (UCP), UCP1. This factor is particularly important in lambs in which levels of UCP1 peak at birth, concomitant with a rapid decline in plasma leptin levels. Our studies have examined the effect of acute and chronic administration of leptin to neonatal lambs, investigating effects on colonic temperature, UCP1 and thermogenic potential of BAT. Administration of leptin in sequential physiological doses of 10, 100 and 100 µg to neonatal lambs caused a modest increase in colonic temperature which was not observed in weight-matched vehicle-treated controls. This increase in colonic temperature was not mediated by an increase in either abundance or thermogenic potential of UCP1, as previously shown in adult rodents. UCP1 mRNA levels were 30 % lower in leptin-treated lambs, which is also contradictory to findings in adult rodents. Leptin treatment resulted in a dose-dependent rise in plasma leptin, with levels at the end of the study being almost twenty times greater in leptin-treated animals. To determine whether these findings in neonatal lambs were transient due to the complex milieu of hormones present after birth, we examined the effect of chronic leptin treatment over 6 d. Pairs of lambs were treated daily, from the second to seventh day of life with 100 µg leptin or vehicle. Colonic temperatures of leptin- and vehicle-treated animals remained similar throughout the study. UCP1 abundance was significantly lower in the leptin-treated animals, suggesting that the drop in UCP1 mRNA seen in the previous study had been translated to protein levels. In conclusion, the decline in plasma leptin levels at birth may be a signal to initiate enteral feeding. In lambs, the rapid loss of UCP1 mRNA, which occurs within the first few days of life, appears to be accelerated by leptin administration, possibly stimulating the development of white adipose tissue and generation of body heat through mechanisms other than non-shivering thermogenesis by UCP1 in BAT.


2014 ◽  
Vol 223 (1) ◽  
pp. M31-M38 ◽  
Author(s):  
Alison Mostyn ◽  
Linda Attig ◽  
Thibaut Larcher ◽  
Samir Dou ◽  
Pascale Chavatte-Palmer ◽  
...  

Intrauterine growth restriction (IUGR) may be accompanied by inadequate thermoregulation, especially in piglets that are not considered to possess any brown adipose tissue (BAT) and are thus entirely dependent on shivering thermogenesis in order to maintain body temperature after birth. Leptin can stimulate heat production by promoting non-shivering thermogenesis in BAT, but whether this response occurs in piglets is unknown. Newborn female piglets that were characterised as showing IUGR (mean birth weight of approximately 0.98 kg) were therefore administered injections of either saline or leptin once a day for the first 5 days of neonatal life. The dose of leptin was 0.5 mg/kg, which is sufficient to increase plasma leptin by approximately tenfold and on the day of birth induced a rapid increase in body temperature to values similar to those of normal-sized ‘control’ piglets (mean birth weight of ∼1.47 kg). Perirenal adipose tissue was then sampled from all offspring at 21 days of age and the presence of the BAT-specific uncoupling protein 1 (UCP1) was determined by immunohistochemistry and immunoblotting. UCP1 was clearly detectable in all samples analysed and its abundance was significantly reduced in the IUGR piglets that had received saline compared with controls, but was raised to the same amount as in controls in those IUGR females given leptin. There were no differences in gene expression between primary markers of brown and white adipose tissues between groups. In conclusion, piglets possess BAT that when stimulated exogenously by leptin can promote increased body temperature.


1994 ◽  
Vol 269 (10) ◽  
pp. 7435-7438
Author(s):  
D.L. Murdza-Inglis ◽  
M. Modriansky ◽  
H.V. Patel ◽  
G. Woldegiorgis ◽  
K.B. Freeman ◽  
...  

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Haiying Zhou ◽  
Bo Wan ◽  
Ivan Grubisic ◽  
Tommy Kaplan ◽  
Robert Tjian

Brown adipose tissue (BAT) plays an essential role in metabolic homeostasis by dissipating energy via thermogenesis through uncoupling protein 1 (UCP1). Previously, we reported that the TATA-binding protein associated factor 7L (TAF7L) is an important regulator of white adipose tissue (WAT) differentiation. In this study, we show that TAF7L also serves as a molecular switch between brown fat and muscle lineages in vivo and in vitro. In adipose tissue, TAF7L-containing TFIID complexes associate with PPARγ to mediate DNA looping between distal enhancers and core promoter elements. Our findings suggest that the presence of the tissue-specific TAF7L subunit in TFIID functions to promote long-range chromatin interactions during BAT lineage specification.


Sign in / Sign up

Export Citation Format

Share Document