Multilayer porous waveguide for microwave low-loss applications

2011 ◽  
Vol 3 (4) ◽  
pp. 459-463
Author(s):  
Ebrahim Mortazy ◽  
Alireza Hassani ◽  
Francois Legare ◽  
Ke Wu ◽  
Mohamed Chaker

A novel waveguide called multilayer porous waveguide (MPW) is proposed as microwave low-loss transmission lines. MPW is a fully rectangular dielectric waveguide composed of several periodically rectangular air gaps in a bulk dielectric that can be easily formed by placing several dielectric substrates in interval with air gaps. The loss and propagating characteristics of both TE and TM modes in MPW are studied. The TE mode confined in the air gaps has a lower loss than the TM mode spread out in air gaps and dielectric; however, the loss of TM mode is still less than that of conventional microwave waveguides. Finally, MPW is an artificial material with desirable electrical permittivity and loss that can be used in structure of conventional waveguides.

2019 ◽  
Vol 48 (4) ◽  
pp. 567-581 ◽  
Author(s):  
Jiamin Liu ◽  
Zia Ullah Khan ◽  
Siamak Sarjoghian

Abstract Theory of five kinds of layered structure THz waveguides is presented. In these waveguides, the modified and hybrid THz surface plasmon-polaritons (SPPs) are researched in detail. On these modes, the effects of material in each layer are discussed. The anti-resonant reflecting mechanism is also discussed in these waveguides. The mode characteristics of both TM mode and TE mode are analyzed for guiding TM mode with low loss and TE modes with huge loss in one waveguide: the TE modes filter application is put forward. The mode characteristics for one waveguide have useful sensor applications: for TE1 mode, we find that the low cut-off frequency has a sensitivity (S) to the refractive index of the dielectric slab. The highest S can be 666.7 GHz/RIU when n2 = 1.5, w = 0 and t = 0.1 mm. We believe these results are very useful for designing practical THz devices for SPPs, filter and sensor applications.


1999 ◽  
Vol 597 ◽  
Author(s):  
K. Nashimoto ◽  
S. Nakamura ◽  
H. Moriyama ◽  
K. Haga ◽  
M. Watanabe ◽  
...  

AbstractHeterostructures of a Pb(Zr,Ti)O3 (PZT) waveguide/(Pb,La)(Zr,Ti)O3 (PLZT) system buffer layer were grown on a Nb-doped SrTiO3 (Nb:ST) substrate by solid-phase epitaxy. The propagation loss in the PLZT heterostructure waveguides was on the order of I dB/cm. An electro-optic beam deflection device with an ITO prism electrode on the surface of the PLZT heterostructure waveguide presented efficient deflection of the coupled laser beam by applying a voltage between the electrode and the substrate. A beam deflection greater than 10 mrad at 5 V and frequency response as fast as 13 MHz were observed. An apparent electro-optic coefficient as large as 39 pmJV was estimated from the deflection characteristics for the TE mode and TM mode suggesting the polarization independent nature of the PZT waveguide. For integrating the electrooptic PLZT heterostructure waveguides, channel waveguides were fabricated in the PZT waveguides using a simple wet-etching process. Based on a low-voltage drive structure, lowloss waveguide process, and fine patterning process, a fabricated digital matrix switch showed a – 10 dB cross-talk at a voltage as low as 7.5 V.


2016 ◽  
Vol 2016 (CICMT) ◽  
pp. 000191-000198 ◽  
Author(s):  
A. Isapour ◽  
D. Bahloul ◽  
A. B. Kouki

Abstract The wireless telecommunication systems have an undeniable role in today's society. The rapid progress of wireless services and applications accelerates demands for high data-rate reliable systems. The 60 GHz band with its 5 GHz globally unlicensed available spectrum, provides a great opportunity for the next generation of high data-rate wireless communication. Despite this attractive bandwidth surrounding 60 GHz, there are still many challenges to be addressed such as the loss performance and the integration with other systems. Low Temperature Cofired Ceramic (LTCC) technology, with its unique and mature multilayer fabrication process, has excellent capability of realizing miniaturized 3D low loss structures to overcome these challenges. Since, one of the key components in any communication system for both interconnecting and designing components is Low loss transmission lines, in this article we overview the performances and challenges for four different most practical transmission lines at 60 GHz in LTCC: Microstrip, Stripline, Coplanar Waveguide (CPW), and LTCC Integrated Waveguide (LIW).


Sign in / Sign up

Export Citation Format

Share Document