Design of angular and polarization stable modified circular ring frequency selective surface for satellite communication system

2015 ◽  
Vol 8 (6) ◽  
pp. 899-907 ◽  
Author(s):  
Garima Bharti ◽  
Kumud Ranjan Jha ◽  
Ghanshyam Singh ◽  
Rajeev Jyoti

In this paper, a simple synthesis technique to obtain the geometrical parameters of the modified circular ring for angular and polarizations (perpendicular and parallel) stable frequency selective surface (FSS) has been discussed. The geometrical parameters of the modified circular ring FSS structure have been achieved using the proposed synthesis technique, which is based on the equivalent circuit (EC) approach. In addition to this, the numerical analysis is also discussed to determine the values of EC parameters, which depends on the basic system level characteristics such as frequency of operation and reflection/transmission coefficients. The analytical results are supported using the full-wave three-dimensional electromagnetic (EM) simulators such as CST Microwave Studio and Ansoft HFSS. The sensitivity of the structure to the perpendicular and parallel polarized EM wave up to 50° angle-of-incidences (AOIs) has been discussed. The stability over different AOI is attributed to the appropriate thickness of the structure with its small unit-cell dimensions. We have also fabricated and experimentally tested the proposed FSS structure.

2014 ◽  
Vol 7 (1) ◽  
pp. 95-106 ◽  
Author(s):  
Garima Bharti ◽  
Kumud Ranjan Jha ◽  
Ghanshyam Singh ◽  
Rajeev Jyoti

In this paper, the analysis and simulation of a novel geometrical structure of the frequency selective surface (FSS), which has been achieved through the conductive loading of the simple circular ring with wedge-shaped metal vanes has been discussed. The electrical performance and behavior of the proposed structure have been studied in Ku band (12–18 GHz) of the electromagnetic spectrum for satellite communication. We have radially optimized the proposed structure to enhance the performance, such as reflection and transmission bandwidth. We have also discussed the effect of incident electric field at 0°, 10°, 30°, and 50° on the electrical performance of the proposed FSS. In addition to this, the effect of angular sensitivity on the proposed structure through increasing the number of conductive loaded wedge-shaped metal vanes is also explored. However, the structural parameters of the proposed FSS have been obtained through the synthesis technique. The analytical results obtained from the synthesis technique have been supported by the simulation results achieved through CST Microwave Studio as well as Ansoft high frequency structural simulator (HFSS), which are commercially available simulators based on the finite integral and finite-element technique, respectively. Furthermore, for validation of the numerical results, the Ansoft circuit simulator which is based on mixed potential integral equations (MPIE) and solved by the method-of-moment has also been used to obtain the reflection and transmission parameters through the values of inductance and capacitance, which have been achieved by the numerical analysis.


2019 ◽  
Vol 12 (3) ◽  
pp. 205-211
Author(s):  
Chunyan Gao ◽  
Hongbin Pu ◽  
Shan Gao ◽  
Chunlan Chen ◽  
Yong Yang

AbstractIn this paper, a sandwiched type frequency selective surface (FSS) is designed and analyzed. The design procedure and operating principle is given based on the equivalent circuit model. The proposed FSS includes two identical layers of periodic metallic arrays, which are separated by a foam layer. In each layer of the periodic array, the unit cell is composed of a gridded-triple square loop structure. The FSS provides three pass-bands, in which a flat band response is presented. Three bands are separated by one or two transmission zeros, which leads to a sharp rejection on both sides of each pass-band. The central frequencies of the three pass-bands are 7.0, 10.9 and 14.0 GHz. To verify the simulated results, a prototype of the FSS is fabricated and measured. The simulated results agree well with the measured ones. This work can be used in area of a radar stealth or satellite communication system.


2020 ◽  
Vol 17 (13) ◽  
pp. 20200153-20200153
Author(s):  
Zhengyong Yu ◽  
Wanchun Tang ◽  
Yuehua Li ◽  
Jianping Zhu

Sign in / Sign up

Export Citation Format

Share Document