Compact dual-band bandpass filter using open stub-loaded stepped impedance resonator with cross-slots

2016 ◽  
Vol 9 (2) ◽  
pp. 269-274 ◽  
Author(s):  
Bukuru Denis ◽  
Kaijun Song ◽  
Fan Zhang

A compact dual-band bandpass filter using stub-loaded stepped impedance resonator (SLSIR) with cross-slots is presented. The symmetric SLSIR is analyzed using even- and odd-mode techniques. Design equations are derived and they are used to guide the design of the circuits. Two passbands can be easily tuned by cross-slots and open stubs. Transmission zeros among each passbands are created, resulting in high isolation and frequency selectivity. An experimental circuit is fabricated and evaluated to validate the design concept. The fabricated filter is compact with 19.76 × 12.7 mm2. The measurement results are in good agreement with the full-wave simulation results.

2014 ◽  
Vol 6 (6) ◽  
pp. 611-618 ◽  
Author(s):  
Yung-Wei Chen ◽  
Hung-Wei Wu ◽  
Yan-Kuin Su

In this paper, a new multi-layered triple-passband bandpass filter using embedded and stub-loaded stepped impedance resonators (SIRs) is proposed. The filter is designed to have triple-passband at 1.8, 2.4, and 3.5 GHz. The 1st and 2nd passbands (1.8/2.4 GHz) are simultaneously generated by controlling the impedance and length ratios of the embedded SIRs (on top layer). The 3rd passband (3.5 GHz) is generated by using the stub-loaded SIR (on bottom layer). Using the embedded SIR, the even modes can be tuned within very wide frequency range and without affecting the odd modes. Therefore, the design of multi-band filters with very close passbands can be easily achieved and having a high isolation between the passbands. The filter can provide the multi-path propagation to enhance the frequency response and achieving the compact circuit size. The measured results are in good agreement with the full-wave electromagnetic simulation results.


Frequenz ◽  
2018 ◽  
Vol 72 (5-6) ◽  
pp. 245-252 ◽  
Author(s):  
Maryam Kazemi ◽  
Saeedeh Lotfi ◽  
Hesam Siahkamari ◽  
Mahmood Mohammadpanah

AbstractAn ultra-wideband (UWB) bandpass filter with ultra-wide stopband based on a rectangular ring resonator is presented. The filter is designed for the operational frequency band from 4.10 GHz to 10.80 GHz with an ultra-wide stopband from 11.23 GHz to 40 GHz. The even and odd equivalent circuits are used to achieve a suitable analysis of the proposed filter performance. To verify the design and analysis, the proposed bandpass filter is simulated using full-wave EM simulator Advanced Design System and fabricated on a 20mil thick Rogers_RO4003 substrate with relative permittivity of 3.38 and a loss tangent of 0.0021. The proposed filter behavior is investigated and simulation results are in good agreement with measurement results.


Frequenz ◽  
2019 ◽  
Vol 73 (9-10) ◽  
pp. 293-300
Author(s):  
Dinghong Jia ◽  
Jianqin Deng ◽  
Yangping Zhao ◽  
Ke Wu

Abstract This work presents an approach to developing dual-mode dual-band substrate integrated waveguide (SIW) bandpass filter based on multilayer process. TE102/TE201 and TE101/TE102 modes are used to feature the two passbands, respectively. To begin with, large range of band location ratios are decided by the effective dimension of the SIW resonator. With reference to the field distribution, independent coupling schemes of the dual-modes are then realized by slots or circular apertures etched on the middle metal layer. It allows to not only introduce a large design freedom of bandwidth but also keep compactness. Finally, source-load and mixed couplings are deployed to produce transmission zeros around the passband in providing a sharp selectivity in the two filters, respectively. The details to independently control the center frequencies and bandwidth of two passbands are also presented. A two-order double-layered and a triple-layered SIW dual-band bandpass filter are prototyped to evaluate the proposed design approach, respectively. Results show a good agreement between simulations and measurements. The proposed filter exhibits flexible design freedom, high selectivity as well as good out-of-band rejection.


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Wei-Qiang Pan ◽  
Xiao-Lan Zhao ◽  
Yao Zhang ◽  
Jin-Xu Xu

This paper presents a novel method to design dual-band bandpass filters with tunable lower passband and fixed upper passband. It utilizes a trimode resonator with three controllable resonant modes. Discriminating coupling is used to suppress the unwanted mode to avoid the interference. Varactors are utilized to realize tunable responses. The bandwidth of the two bands can be controlled individually. Transmission zeros are generated near the passband edges, resulting in high selectivity. For demonstration, a tunable bandpass filter is implemented. Good agreement between the prediction and measurement validates the proposed method.


Author(s):  
Dian Widi Astuti ◽  
Rizki Ramadhan Putra ◽  
Muslim Muslim ◽  
Mudrik Alaydrus

The substrate integrated waveguide (SIW) structure is the candidate for many application in microwave, terahertz and millimeter wave application. It because of SIW structure can integrate with any component in one substrate than others structure. A kind components using SIW structure is a filter component, especialy bandpass filter. This research recommended SIW bandpass filter using rectangular open loop resonator for giving more selectivity of filter. It can be implemented for short range device (SRD) application in frequency region 2.4 - 2.483 GHz. Two types of SIW bandpass filter are proposed. First, SIW bandpass filter is proposed using six rectangular open loop resonators while the second SIW bandpass filter used eight rectangular open loop resonators. The simulation results for two kinds of the recommended rectangular open loop resonators have insertion loss (S<sub>21</sub> parameter) below 2 dB and return loss (S<sub>11</sub> parameter) more than 10 dB. Fabrication of the recommended two kind filters was validated by Vector Network Analyzer. The measurement results for six rectangular open loop resonators have 1.32 dB for S<sub>21</sub> parameter at 2.29 GHz while the S<sub>11</sub> parameter more than 18 dB at 2.26 GHz – 2.32 GHz. While the measurement results has good agreement for eight rectangular open loop resonators. Its have S<sub>21</sub> below 2.2 dB at 2.41 – 2.47 GHz and S<sub>11</sub> 16.27 dB at 2.38 GHz and 11.5 dB at 2.47 GHz.


2022 ◽  
Vol 9 ◽  
Author(s):  
Nan Wang ◽  
Haokun Wei ◽  
Kun Gao ◽  
Xiting Ruan ◽  
Xiaojian Chen ◽  
...  

A novel dual-band bandpass filter (BPF) is proposed with independently controllable transmission zeros (TZs) which can realize widely tunable stopband bandwidth (BW). The planar microstrip filter consists of a three-degree L-C ladder lowpass filter loaded with two unsymmetrical shorted stubs which are used to produce different TZs. By tuning the parameters of the two unsymmetrical shorted stubs, the TZs can be independently controlled. Therefore, the BPF has independent controllable center frequencies (CFs), passband bandwidths, and stopband bandwidths between adjacent passbands. All the L-C values in the equivalent circuit of the proposed filter are optimized to fulfill the design specifications. For demonstration, a dual-band BPF is designed. The measured results show good agreement with the simulated ones.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Haiwen Liu ◽  
Jiuhuai Lei ◽  
Jing Wan ◽  
Yan Wang ◽  
Feng Yang ◽  
...  

A miniaturized dual-mode bandpass filter (BPF) with elliptic function response using slot spurline is designed in this paper. The slot spurline can not only splits the degenerate modes but also determine the type of filter characteristic (Chebyshev or elliptic). To miniaturize the resonator, four sagittate stubs are proposed. For demonstration purpose, a BPF operating at 5.75 GHz for WLAN application was designed, fabricated, and measured. The measured results are in good agreement with the full-wave simulation results.


Frequenz ◽  
2017 ◽  
Vol 71 (7-8) ◽  
Author(s):  
Lei Chen ◽  
Xiao Yan Li ◽  
Feng Wei

AbstractA compact quad-band band-pass filter (BPF) based on stub loaded resonators (SLRs) with defected microstrip structure (DMS) is analyzed and designed in this paper. The proposed resonator is created by embedding DMS into the SLR and can achieve four narrow passbands. By employing the pseudointerdigital coupling structure between the two resonators, transmission zeros among each passband are generated to improve the passband selectivity and a high isolation is achieved. In order to validate its practicability, a prototype of a quad-band BPF centred at 1.57, 2.5, 4.3 and 5.2 GHz is designed and fabricated. The proposed filter is more compact due to the slow-wave characteristic of DMS. The simulated and measured results are in good agreement with each other. In addition, the DMS idea can be extended to the design of other microstrip passive devices.


Author(s):  
Mohd Nasiruddin Hushim ◽  
Norfishah Ab Wahab ◽  
Muhammad Farid Abdul Khalid ◽  
Tn. Syarifah Atifah Tn. Mat Zin

This paper presents an implementation of quarter wavelength single-shorted coupled-lines for narrow bandpass filter application. It is shown as a new way of creating a single resonance bandpass filter by inter-connected of two <br /> single-shorted quarter wavelength coupled-line sections. By adding more single-shorted coupled-line into the configuration, the form of halfwavelength resonator can increase the degree of order of the filter. For the design of 4<sup>th</sup> order resonator, the coupledlines are arranged inter-connected to each other forming five-fingers lines layout. Due to the interconnection of the coupledlines, transmission zeros appear at the two stopbands which improves the selectivity of the filter response. Investigation on the parametric of the 4<sup>th</sup> order resonator is conducted to observe the controlling parameters and it’s realiability responses of the resonator. For compactness, five-fingers meandered lines is proposed. It is found that the size of the meandered lines resonator was successfully reduced by 33% compared to the five-fingers straight lines resonator of the same order. For validation of concept, the 4<sup>th</sup> order meandered lines resonator was designed at 1 GHz and fabricated on RO3210 microstrip substrate with characteristics given as h = 1.27 mm, Ɛr = 10.2 and tan δ = 3x10<sup>-3</sup>. The measurement results show good agreement with the simulation results.


Sign in / Sign up

Export Citation Format

Share Document