scholarly journals Autofocusing SAR images via local estimates of flight trajectory

2016 ◽  
Vol 8 (6) ◽  
pp. 881-889 ◽  
Author(s):  
Oleksandr O. Bezvesilniy ◽  
Ievgen M. Gorovyi ◽  
Dmytro M. Vavriv

High-resolution imaging with an airborne synthetic aperture radar (SAR) calls for precise trajectory measurements that can hardly be achieved with common navigation systems. In this paper, an efficient method called the local-quadratic map-drift autofocus is developed for the estimation of residual (uncompensated) motion errors directly from the received radar data. The map-drift autofocus is applied locally on short time intervals to estimate the cross-track components of the aircraft acceleration. The estimated acceleration is then integrated to evaluate the residual trajectory errors on the whole data frame interval. The method has been successfully tested with an X-band airborne SAR system.

2014 ◽  
Vol 60 (3) ◽  
pp. 225-231 ◽  
Author(s):  
Ievgen M. Gorovyi ◽  
Oleksandr O. Bezvesilniy ◽  
Dmytro M. Vavriv

Abstract Two modifications of the range-Doppler algorithm (RDA) have been proposed to solve problems of SAR platform motion instabilities. First, the multi-look processing based on the RDA with an extended Doppler bandwidth has been introduced for correction of radiometric errors. Second, the RDA has been modified to perform SAR image formation on short-time acquisition intervals to use it in a recently-developed local-quadratic map-drift autofocus (LQMDA) method. The performance of the methods is illustrated with experimental data obtained by airborne SAR systems.


2020 ◽  
Author(s):  
Jimmy Moneron ◽  
Zohar Gvirtzman

<p>New high-resolution imaging of recently acquired data in the Levant basin shed light on very dense channel systems. The processes behind their origin, timing and direction - during the different stages of the Messinian Salinity Crisis (MSC) - is still unresolved and partly understood. Discoveries of such drainage systems raise questions on a past topography and mechanisms responsible for the channel morphologies, the understanding of these channel patterns is thus essential for a meaningful assessment of such mechanisms involved in the context of the MSC and its aftermath. Our results show that the drainage direction was undergoing extreme changes during short time intervals in the Levant Basin. Indeed, new maps presented here indicate different past drainage orientations, which is in contrast to the current-day turbidite channels - draining the Sinai-Levant continental margin northward towards the Cyprus Arc. We hypothesize from these results that drainage change, from southwest to north, expresses northward tilting of the basin towards the Cyprus subduction zone, however, when exactly did this tilting occur? Deciphering the timing of such events is important in order to get a better understanding of tectonostratigraphic settings, controlling depocenter locations in the Levant basin in the MSC. We also suggest that the unique pattern of channels over the Intra-Messinian Truncation Surface (IMTS), expresses a complex seafloor relief which was mainly controlled by salt tectonics induced thrusts faults.</p><p>Keywords: Messinian Salinity Crisis, Channel systems, Evaporites, Seismic Reflection Profiles</p>


2015 ◽  
Vol 143 (7) ◽  
pp. 2685-2710 ◽  
Author(s):  
Jana Lesak Houser ◽  
Howard B. Bluestein ◽  
Jeffrey C. Snyder

Abstract On 24 May 2011, a mobile, rapid-scan, X-band, polarimetric, Doppler radar (RaXPol) collected data on a supercell as it produced two tornadoes near El Reno, Oklahoma. The first tornado, rated an EF-3, was documented from intensification to decay, and the genesis and intensification of a second tornado that was rated an EF-5 was subsequently also documented. The objective of this study is to examine the spatiotemporal evolution of the rotation associated with the tornadoes (i) as the first tornado weakened to subtornadic intensity and (ii) as the second tornado formed and intensified. It is found that weakening did not occur monotonically. The transition from tornadic to subtornadic intensity over the depth of the radar volume (~4 km) occurred in less than 30 s, but this behavior is contingent upon the threshold for Doppler shear used to define the tornado. Similarly, the onset of a tornadic-strength Doppler velocity couplet occurred within a 30-s period over all elevations. Additionally, the evolution of storm-scale features associated with tornado dissipation and tornadogenesis is detailed. These features evolved considerably over relatively short time intervals (1–4 min). It is shown that during the transition period between the two tornadoes, two mesocyclones were present, but neither the tornadoes nor the mesocyclones evolved in a manner entirely consistent with any published conceptual model of supercell cycling, although certain aspects were similar to classic conceptual models. The mesocyclone and the tornado evolved differently from each other, in a manner that resembles a hybrid between the occluding and nonoccluding cyclic mesocyclogenesis models presented by Adlerman and Droegemeier.


2005 ◽  
Author(s):  
R. Albrizio ◽  
P. Blonda ◽  
A. Mazzone ◽  
F. Pasquali ◽  
G. Pasquariello ◽  
...  

2016 ◽  
Vol 136 (12) ◽  
pp. 891-897 ◽  
Author(s):  
Katsuhiro Matsuda ◽  
Kazuhiro Misawa ◽  
Hirotaka Takahashi ◽  
Kenta Furukawa ◽  
Satoshi Uemura

Author(s):  
Elena Yu. Balashova ◽  
◽  
Lika I. Mikeladze ◽  
Elena K. Kozlova ◽  
◽  
...  

2019 ◽  
Vol 11 (24) ◽  
pp. 2991 ◽  
Author(s):  
Jin Yan ◽  
Mingyang Lv ◽  
Zhixing Ruan ◽  
Shiyong Yan ◽  
Guang Liu

A surge-type glacier is a special and dangerous type of glacier, which can advance quickly in a short-time with cycles. Glaciers in the Yangtze River headwater are generally acknowledged to be in a stable state. However, not all of those glaciers are stable. In this paper, five glaciers from the Yangtze River headwater glacier were selected as the experimental subjects, and multi-source remote sensing images were used to study and analyze the surge behavior over the past 30 years. Based on the Landsat series data, ERS-2, and ENVISAT radar data, this paper extracts the glacier centerline information, glacial area information, and glacial flow velocity during different time periods from 1988 to 2018, which are used to monitor the active periods of glacier surges. We found three surge-type glaciers in the study area. The glacial characteristics of the three glaciers showed some drastic changes, they can advance quickly nearly 800 m in active periods, their area change can reach 2.0 × 106 m2, and their flow velocity can suddenly increase by dozens of times. Surging periods and the initiated time of the three glaciers are different, which are locked in 1997, 2003, and 1997–1998. All those surges ended within one to two years. We suggest that the surges in this paper are dominated by hydrological conditions.


2018 ◽  
Vol 146 (8) ◽  
pp. 2483-2502 ◽  
Author(s):  
Howard B. Bluestein ◽  
Kyle J. Thiem ◽  
Jeffrey C. Snyder ◽  
Jana B. Houser

Abstract This study documents the formation and evolution of secondary vortices associated within a large, violent tornado in Oklahoma based on data from a close-range, mobile, polarimetric, rapid-scan, X-band Doppler radar. Secondary vortices were tracked relative to the parent circulation using data collected every 2 s. It was found that most long-lived vortices (those that could be tracked for ≥15 s) formed within the radius of maximum wind (RMW), mainly in the left-rear quadrant (with respect to parent tornado motion), passing around the center of the parent tornado and dissipating closer to the center in the right-forward and left-forward quadrants. Some secondary vortices persisted for at least 1 min. When a Burgers–Rott vortex is fit to the Doppler radar data, and the vortex is assumed to be axisymmetric, the secondary vortices propagated slowly against the mean azimuthal flow; if the vortex is not assumed to be axisymmetric as a result of a strong rear-flank gust front on one side of it, then the secondary vortices moved along approximately with the wind.


Sign in / Sign up

Export Citation Format

Share Document