Compact dual-band antennas with large frequency ratio and bandwidth enhancement for wireless applications

2016 ◽  
Vol 9 (5) ◽  
pp. 1131-1138
Author(s):  
Abdelheq Boukarkar ◽  
Xian Qi Lin ◽  
Yuan Jiang

In this paper, compact single-feed dual-band antennas for different wireless applications are proposed. First, a dual-band antenna with a comparatively large frequency ratio of 2.58 is designed. Then, a novel dual-band antenna is introduced in order to enhance the upper frequency band. The technique consists of modifying the feed line structure, which leads to a 9.23% of impedance bandwidth at the central frequency of 6.5 GHz instead of 2.06%. The designed antennas are fabricated and tested in the laboratory and in a small anechoic chamber in order to measure their reflection coefficient, gains, and efficiencies. Good agreement between simulated and measured results is obtained. The designed antennas are particular because they have low profile, very simple single-feed technique, can be designed for large frequency ratios, and also the bandwidth can be clearly enhanced. Therefore, they can be used for different wireless applications.

In this paper, a rectangular patch antenna with slits for dual band capabilities is presented. The suggested antenna works for two frequencies which are at 2.5 GHz and 5.1 GHz. The first operating frequency is in the band of 2.3 to 2.7GHz with -16.8dB reflection coefficient at 2.5GHz resonating frequency, whereas the second band is 4.6 to 5.5GHz with -29.2dB reflection coefficient at 5.1GHz resonating frequency. The simulation results exhibit that, the suggested antenna works for dual band frequency having impedance bandwidth of 482 and 844 MHz respectively. The gain is observed as 2.9 dBi and 4.2 dBi of respective bands. The first frequency band can be used for Industrial, Scientific and Medical(ISM) applications and second frequency band can be used for C-band applications.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 29132-29139
Author(s):  
Jian-Xin Chen ◽  
Shuai-Hua Cao ◽  
Xue-Feng Zhang

2021 ◽  
Vol 11 (5) ◽  
pp. 2007
Author(s):  
Yuqing Dou ◽  
Guiting Dong ◽  
Jiafu Lin ◽  
Qibo Cai ◽  
Gui Liu

This paper presents a low-profile dual-band antenna with directional radiation characteristics for wireless local area network (WLAN) applications. The proposed directional antenna is composed of a coupling microstrip line, two F-shaped strips, two rectangular strips, and a defected ground plane. The measured impedance bandwidth of the proposed antenna is 180 MHz (2.33–2.51 GHz) and 830 MHz (5.09–5.92 GHz), which can cover Institute of Electrical and Electronic Engineers (IEEE) 802.11 a/b/g frequency bands. The dual-band antenna exhibits a desirable directional radiation patterns in the vertical and horizontal planes with the peak gain of 6.55 dBi in the lower frequency band and 8.1 dBi in the higher frequency band. The measured antenna efficiency is 70% at 2.4 GHz and 84.5% at 5.5 GHz. The proposed dual-band WLAN station antenna is designed on a FR4 substrate with overall dimensions of 69 mm × 50 mm × 1.6 mm.


Author(s):  
Miaomiao Zuo ◽  
Jian Ren ◽  
Rongxu Hou ◽  
Xiaoyu Du ◽  
Zhe Chen ◽  
...  

2018 ◽  
Vol 66 (2) ◽  
pp. 657-667 ◽  
Author(s):  
Bing Jie Xiang ◽  
Shao Yong Zheng ◽  
Hang Wong ◽  
Yong Mei Pan ◽  
Kai Xu Wang ◽  
...  

Author(s):  
Amit Kumar ◽  
Amit Kumar Singh

In this communication, the design of a dual-band and low-profile SIW cavity-backed slot antenna operating at K-band and Ka-band has been proposed to expand the Impedance bandwidth (IBW) of the antenna. The dual-band antenna consists of the SIW cavity with two parallel slots etched on the conductor’s ground plane. To obtain a dual-band, higher-order hybrid modes are tuned and combined to form the second band of the proposed antenna with a broader bandwidth. For dual-band antenna, fractional bandwidth of 5.26% and 6.15% are attained with the maximum gain of 5.45 dBi and 6.15 dBi at 24.7 GHz and 27.8 GHz, respectively. A cavity-backed antenna using via-hole and the slot has been proposed to improve an IBW and other antenna performance parameters. Via-hole establishes a connection between the top and bottom surfaces of the cavity, creating a new path for the current to flow by shortening the slot’s effective length. An IBW of 4.2 GHz (15.32%), where a gain of 7.8 dBi and 9.2 dBi have been realized at 25.9 GHz and 28.8 GHz, respectively. Isolation of less than 25 dB has been achieved through simulation. In terms of λ0, the overall volumetric dimension of the proposed antenna is 1.68 λ0×1.31λ0×0.04λ0. The proposed design demonstrates better performance in terms of antenna parameters, including compactness, good radiation characteristics, enhanced impedance bandwidth, and higher gain than the latest state of the art.


Frequenz ◽  
2018 ◽  
Vol 72 (7-8) ◽  
pp. 343-351 ◽  
Author(s):  
Shilpee Patil ◽  
A. K. Singh ◽  
Binod K. Kanaujia ◽  
R. L. Yadava

Abstract A low profile wide slot antenna for dual band and dual sense circular polarization (CP) is proposed here and is simulated by using HFSS simulation software.The proposed antenna having a C shaped patch for dual band operation and a wide square slot etched on the ground with two strips for CP operation. In between radiating patch and ground plane, designed antenna has a layer of easily available dielectric (FR-4) material. Proposed antenna shows an impedance bandwidth of 13.8 % at 2.38 GHz of centre frequency and 9.7 % at 4.43 GHz of centre frequency for lower and upper band respectively. The 3-dB axial ratio (AR) bandwidths for lower and upper band are 18.8 % (at 2.44 GHz of centre frequency) and 13.3 % (at 4.29 GHz of centre frequency), respectively. The peak gain for the lower and upper band is found as 4.1 dBi and 3.3 dBi, respectively. A close agreement has been found between the simulated and the measured results.


2019 ◽  
Vol 12 (2) ◽  
pp. 95-100
Author(s):  
Purnima Sharma ◽  
Akshi Kotecha ◽  
Rama Choudhary ◽  
Partha Pratim Bhattacharya

Background: The Planar Inverted-F Antenna (PIFA) is most widely used for wireless communication applications due to its unique properties as low Specific Absorption Rate, low profile geometry and easy fabrication. In literature a number of multiband PIFA designs are available that support various wireless applications in mobile communication, satellite communication and radio frequency field. Methods: In this paper, a miniature sized planar inverted-F antenna has been proposed for dual-band operation. The antenna consists of an asymmetrical pentagonal shaped patch over an FR4 substrate. The overall antenna dimension is 10 × 10 × 3 mm3 and resonates at 5.7 GHz frequency. A modification is done in the patch structure by introducing an asymmetrical pentagon slot. Results: The proposed pentagonal antenna resonates at 5.7 GHz frequency. Further, modified antenna resonates at two bands. The lower band resonates at 5 GHz and having a bandwidth of 1.5 GHz. This band corresponds to C-band, which is suitable for satellite communication. The upper band is at 7.9 GHz with a bandwidth of 500 MHz. Performance parameters such as return loss, VSWR, input impedance and radiation pattern are obtained and analysed using ANSYS High- Frequency Structure Simulator. The radiation patterns obtained are directional, which are suitable for mobile communication. Conclusion: The antenna is compact in size and suitable for radar, satellite and vehicular communication.


Sign in / Sign up

Export Citation Format

Share Document