A Novel Pentagonal Shaped Planar Inverted-F Antenna for Defense Applications

2019 ◽  
Vol 12 (2) ◽  
pp. 95-100
Author(s):  
Purnima Sharma ◽  
Akshi Kotecha ◽  
Rama Choudhary ◽  
Partha Pratim Bhattacharya

Background: The Planar Inverted-F Antenna (PIFA) is most widely used for wireless communication applications due to its unique properties as low Specific Absorption Rate, low profile geometry and easy fabrication. In literature a number of multiband PIFA designs are available that support various wireless applications in mobile communication, satellite communication and radio frequency field. Methods: In this paper, a miniature sized planar inverted-F antenna has been proposed for dual-band operation. The antenna consists of an asymmetrical pentagonal shaped patch over an FR4 substrate. The overall antenna dimension is 10 × 10 × 3 mm3 and resonates at 5.7 GHz frequency. A modification is done in the patch structure by introducing an asymmetrical pentagon slot. Results: The proposed pentagonal antenna resonates at 5.7 GHz frequency. Further, modified antenna resonates at two bands. The lower band resonates at 5 GHz and having a bandwidth of 1.5 GHz. This band corresponds to C-band, which is suitable for satellite communication. The upper band is at 7.9 GHz with a bandwidth of 500 MHz. Performance parameters such as return loss, VSWR, input impedance and radiation pattern are obtained and analysed using ANSYS High- Frequency Structure Simulator. The radiation patterns obtained are directional, which are suitable for mobile communication. Conclusion: The antenna is compact in size and suitable for radar, satellite and vehicular communication.

In this paper, a 15* 80 sized antenna is designed over a paper substrate to test its flexible properties. The proposed antenna feed by a grounded coplanar waveguide(GCPW) is stimulated and the measured results show the operating Dual Band of the antenna cover(3.34-3.62 GHz) and (5.92-6.24 GHz) with the reflection coefficient |S11|< -15dB.These frequency bands operate over SHF bands and hence supports Fixed Mobile Communication and WLAN applications.


2015 ◽  
Vol 9 (2) ◽  
pp. 447-452 ◽  
Author(s):  
Xi-Wang Dai ◽  
Tao Zhou ◽  
Bo-Ran Guan

A novel dual-band planar antenna with a low profile for mobile communication system is proposed in this paper. The antenna is composed of one shorted patch with two radiating notches for low frequency resonance and one square patch for high frequency resonance. The low profile is achieved via the shorting patch, which introduces the parallel electrical field between the reflector and antenna. A step-impedance microstrip line is used to feed the antenna. The coupling between the square patch and microstrip line cancels out the inductance of shorting probe, which increases the working bandwidth of proposed antenna. A prototype with a low profile of 0.0286λ is fabricated and measured. The antenna achieves dual impedance bandwidths of 1.6% for the low frequency band and 60% for the high frequency band, covering the frequency range 851–865 MHz and 1.97–3.65 GHz, respectively. The measured results show good agreements with the simulated ones.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Mahdi Jalali ◽  
Tohid Sedghi ◽  
Shahin Shafei

A novel configuration of a printed monopole antenna with a very compact size for satisfying WLAN operations at the 5.2/5.8 GHz and also for X-band operations at the 10 GHz has been proposed. The antenna includes a simple square-shaped patch as the radiator, the rotated U-shaped conductor back plane element with embedded strip on it, and the partial rectangular ground surface. By using the rotated U-shaped conductor-backed plane with proper values, good impedance matching and improvement in bandwidth can be achieved, at the lower and upper bands. The impedance bandwidth forS11<-10 dB is about 1.15 GHz for 5 GHz band and 5.3 GHz for X-band. The measured peak gains are about 1.9 dBi at WLAN-band and 4.2 dBi at X-band. The experimental results represent that the realized antenna with good omnidirectional radiation characteristics, enough impedance bandwidth, and reasonable gains can be appropriate for various applications of the future developed technologies and handheld devices.


In this paper “Micro Strip Patch Antenna (F-MSPA)” based on fractal is proposed to perform operations over multiband for a specific time bound. This is designed specifically for “Wireless Power Transmission (WPT)” System which is light weight or it is low profile and light weight when implemented. The main aim of proposed methodology or design of antenna is attained by implementing the basic patch called as the rectangular patch, whose scope is till the third level. Based on this the shape of rectangular cuttings are obtained. The antenna is excited by the obtained or generated micro strip feed as the operations of antenna are performed over various frequency ranges between 1GHz to maximum of 5 GHz. The proposed method comprises of fractal antenna resonant with quad frequencies that ranges: 1.86GHz / 2.29GHz / 3.02GHz / 4.50GHz along with their generated loss values are 13.59dB / -23.66dB / -15.94dB / -15.69dB. Proposed antenna simulation is performed using Ansoft HFSSv13 a high frequency structure simulator.


Author(s):  
D S Ramkiran ◽  
B T P Madhav ◽  
Kankara Narasimha Reddy ◽  
Shaik Shabbeer ◽  
Priyanshi Jain ◽  
...  

A coplanar wave guide fed of semicircle monopole antenna is designed in this work to overcome polarization diversity mimo technique is implemented in this paper. The proposed antenna is designed to notch a particular band of frequencies in UWB range. The designed model is notching the first band from 2 to 5 GHz &amp; the second band from 7 to 11 GHz. The proposed antenna has been fabricated on FR4 substrate with di electric constant 4.4 &amp; tested for its reliability on ZNB20 vector network analyzer. The operating bands will come under WLAN, KU band, satellite communication applications. A peak realized gain of 4.3 dB with radiation efficiency 90% is attained at the operating bands of the designed antenna. At notch band significant gain reduction is observed from the current design. The antenna is showing omnidirectional radiation pattern in the pass band &amp; disturbed radiation pattern in the notch band. Antenna is fabricated with dimensions of 40x68x1.6 mm &amp; simulation works are carried with finite element method based HFSS tool.


2017 ◽  
Vol 9 (8) ◽  
pp. 1725-1733 ◽  
Author(s):  
Manish Sharma ◽  
Yogendra Kumar Awasthi ◽  
Himanshu Singh

In this paper, a vase-shaped monopole antenna is presented for dual band notch (WiMAX IEEE802.16 3.30–3.80 GHz with C-band 3.80–4.20 GHz and WLAN IEEE802.11a/h/j/n 5.15–5.35 GHz, 5.25–5.35 GHz, 5.47–5.725 GHz, 5.725–5.825 GHz) UWB and other wireless services (close range radar: 8–12 GHz in X-band & satellite communication: 12–18 GHz in Ku-band). Measured VSWR of proposed antenna shows a high band-rejection for WiMAX along with C-band with VSWR = 25.33 at 3.77 GHz and WLAN with VSWR = 6.0 at 5.64 GHz is achieved by cutting two C-shaped slots on the radiating patch. Designed antenna covers a wide usable fractional bandwidth 160% (2.58–20.39 GHz). Furthermore, the measured gain of antenna is relatively stable across the impedance bandwidth except band-notched. In addition, antenna offers omni-directional pattern, reasonably small 20 × 20 × 0.787 mm3and easy to construct structure.


2013 ◽  
Vol 397-400 ◽  
pp. 1967-1971
Author(s):  
Guo Xing Jiang

Antenna is all important part of GPS receivers,there is a great need for the design and production of new antennas which are fully compatible with modernized signals. Because of their advantages such as low cost, compact size, low profile,ability to support dual-frequency and circular polarization operation, microstrip patch antennas have become widely used in GPS antenna designs. A circular polarization patch antennas are proposed in the paper. The antenna designed to operate at L1(1575.42MHz) and L5(1176.45MHz)frequency bands. Initially, a comer-truncated patch antenna for GPS L1 operation was designed to validate simulation in Ansoft High Frequency Structure Simulator(HFSS), the results obtained for this antenna were used to design the two proposed antennas,and designed antennas are presented.


Sign in / Sign up

Export Citation Format

Share Document