scholarly journals Inset fed Triple Band U-Slot Antenna for GSM900/GSM1900/WLAN Applications

To cover Global System for Mobile Communication(GSM) and WLAN frequency bands, three distinctive Inset fed antennas like rectangular microstrip, dualband dual slot and antennas are designed. Inset fed micostrip antenna is used for GSM1900 with an impedance bandwidth from 1.90GHz to 1.96GHz. Inset fed dual band dual slot antenna is used for GSM1900 and WLAN with impedance bandwidth is considered first band from 1.90GHz to 1.95GHz and second band from 2.38GHz to 2.42GHz. The proposed Inset fed triple band antenna is used for GSM900, GSM1900 and WLAN with appropriate position of slot, is to operate in frequency ranges of first band is from 920MHz to 940MHz, second band is from 1.91GHz to 1.94GHz and third band is from 2.39GHz to 2.43GHz. A correlation among various feed widths, feed lengths and slot widths are exhibited in this paper.

2016 ◽  
Vol 9 (5) ◽  
pp. 1155-1161 ◽  
Author(s):  
Ailar Sedghara ◽  
Zahra Atlasbaf

A novel dual-band single-feed reconfigurable annular-ring slot antenna with polarization diversity is proposed. This antenna has the ability to switch frequency bands and polarization at the same time whereas applying a simple structure. It consists of two concentric circular slots and two tuning stubs on one side of the substrate and a 50 Ω microstrip feed line and two stubs on the other side. The proposed antenna can be switched between two resonant frequencies, 2.4 GHz (WLAN) and 3.5 GHz (Wimax). Furthermore, it can be switched between linear polarization (LP), left-hand circular polarization (LHCP), and right-hand circular polarization (RHCP) at the first frequency band, LHCP and RHCP at the second band. All these capabilities are achieved by applying only five PIN diodes on both sides of the substrate. Simulation and experimental results indicate that the proposed antenna demonstrates a good impedance bandwidth at the two frequency bands and satisfactory radiation pattern in five different states.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 554
Author(s):  
P Pardhasaradhi ◽  
B T.P. Madhav ◽  
D Rajendra Kamal ◽  
M Chinna Somaiah ◽  
Ch Gayathri ◽  
...  

Antennas with reconfigurable functionality is the mostly preferred one in the antennas field. In such scenario, a work is presented in this article proposing a frequency reconfigurable antenna with a compact PIFA kind of structure. The antenna structure has the folded radiating structure and embedded with some lumped resistance and distributed capacitance, inductance for providing the impedance matching across desired bands for wireless communication. Further, the switching elements (PIN diodes-BAR64-02V) are inserted in the gap between the long-meandered line structure for attaining the switchable characteristics among single band (0.68-0.98 GHz), dual band (0.70 – 0.96 GHz, 2.26 - 2.65 GHz), and triple band (0.69 - 0.99 GHz, 1.89 - 2.78 GHz, 3.64 – 4.1 GHz) respectively. The impedance bandwidth is considered according to S11 < -6 dB criteria for the mobile communication applications. The proposed antenna is suitable for smartphone, laptop and portable devices with GSM/PCS/WCDMA/UMTS/LTE communication applications.


In this paper, a 15* 80 sized antenna is designed over a paper substrate to test its flexible properties. The proposed antenna feed by a grounded coplanar waveguide(GCPW) is stimulated and the measured results show the operating Dual Band of the antenna cover(3.34-3.62 GHz) and (5.92-6.24 GHz) with the reflection coefficient |S11|< -15dB.These frequency bands operate over SHF bands and hence supports Fixed Mobile Communication and WLAN applications.


Author(s):  
Ruchi ◽  
Amalendu Patnaik ◽  
M. V. Kartikeyan

Abstract Designing miniaturized multiband antennas to cover both the 5G new radio frequencies (FR1 and FR2) simultaneously is a challenge for wireless communication researchers. This paper presents two antenna designs : a dual-band printed antenna of size 18 × 16 × 0.285 mm3 operating at FR1–5.8 GHz and FR2–28 GHz and a triple-band printed antenna with dimensions 30 × 25 × 0.543 mm3 operating at FR1–3.5 GHz and 5.8 GHz (sub-6 GHz microwave frequency bands) and FR2–28 GHz (mm-wave frequency band). The final projected triple-band antenna has a compact size with an impedance bandwidth of 12.71%, 11.32%, and 18.3% at 3.5 GHz, 5.8 GHz, and 28 GHz, respectively with the corresponding gain of 1.86 dB, 2.55 dB, and 4.41 dB. The measured radiation characteristics of the fabricated prototypes show that the proposed designs are suitable for trendy 5G-RFID and mobile Internet of things (IoT) applications.


2014 ◽  
Vol 68 (1) ◽  
Author(s):  
Sahar Chagharvand ◽  
M. R. B. Hamid ◽  
M. R. Kamarudin ◽  
Mohsen Khalily

This paper presents a single layer planar slot antenna for dual band operation. The antenna is fed by a coplanar waveguide (CPW) with two inverted C-shaped resonators to achieve the dual band operation. The impedance bandwidth for ǀS11ǀ < -10dB is 14% in lower band and 7% in higher band. The antenna prototype’s electromagnetic performance, impedance bandwidth, radiation pattern, and antenna gain were measured. The proposed configuration offers a relatively compact, easy to fabricate and dual band performance providing gain between 2 and 4 dBi. The designed antenna has good dual bandwidth covering 3.5 WiMAX and 5.8 WLAN tasks. Experimental and numerical results also showed good agreement after comparison.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Liping Han ◽  
Caixia Wang ◽  
Wenmei Zhang ◽  
Runbo Ma ◽  
Qingsheng Zeng

A wideband slot antenna with frequency- and pattern-reconfigurable characteristics for TD-LTE (3.4–3.8 GHz) and C-band (3.7–4.2 GHz) applications is proposed. The antenna consists of two symmetric slots that are fed by a fork-shaped microstrip line. Two PIN diodes are loaded in the slots to produce two different frequency bands. Meanwhile, two additional PIN diodes are inserted in the feed line to achieve the pattern reconfigurability. The wideband operation is realized by using the symmetric slots and fork-shaped feed line. Simulated and measured results show that the antenna provides 25° and 20° beam-steering in 3.4–3.8 and 3.7–4.2 GHz bands, respectively. Also, an impedance bandwidth of at least 12.8% is obtained in the operating bands.


2018 ◽  
Vol 11 (2) ◽  
pp. 182-189 ◽  
Author(s):  
Shilpee Patil ◽  
Anil Kumar Singh ◽  
Binod Kumar Kanaujia ◽  
R. L. Yadava

AbstractThis paper presents a compact microstrip antenna using FR-4 substrate for dual band circularly polarized operation using a modified square ring slot in the ground plane with microstrip line feed. Simulation of the impedance characteristic and radiation characteristic for the proposed antenna is carried out using commercially available HFSS software. The simulated data validate measured results and shows good agreement. Proposed antenna shows an impedance bandwidth (return loss >10 dB) of 50.88% at 5.9 GHz of center frequency and 29.92% at 12.8 GHz of center frequency for lower and upper band, respectively. The 3 dB axial ratio bandwidth for lower and upper band is 26.4 and 3.0%, respectively and measured peak gain for the lower and upper band is found as 3.2 and 3.4 dBic, respectively. The proposed antenna can be suitable for wireless communication in C and Ku bands.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Deepak Batra ◽  
Sanjay Sharma ◽  
Amit Kumar Kohli

The proposed technique combines a slot antenna and a dielectric resonator antenna (DRA) to effectively design a dual band dielectric resonant antenna without compromising miniaturization or its efficiency. It is observed that the resonance of the slot and that of the dielectric structure merged to achieve extremely wide bandwidth over which the antenna polarization and radiation pattern are preserved. Here the effect of slot size on the radiation performance of the DRA is studied. The antenna structure is simulated using two simulators (Ansoft HFSS and CST-Studio software). The simulated results are presented and compared with the measured results. This DRA has a gain of 6 dBi and 5.5 dBi at 6.1 and 8.3 GHz, respectively, 10 dB return impedance bandwidth of nearly 4% and 6% at two resonating frequencies and 98% efficiency has been achieved from the configuration. It is shown that the size of the slot can significantly affect the radiation properties of the DRA, and there are good agreements between simulation and measured results.


Author(s):  
D. Rajesh Kumar ◽  
G. Venkat Babu ◽  
K.G. Sujanth Narayan ◽  
N. Raju

Abstract A dual-band 10-port multiple input multiple output (MIMO) antenna array for 5G smartphone is proposed. Each antenna in the MIMO system can work from 3.4 to 3.6 GHz and 5 to 6 GHz with 10 dB (2:1 VSWR) impedance bandwidth. Nevertheless, for a 3:1 VSWR, the antenna operates from 3.3 to 3.8 GHz and 4.67 to 6.24 GHz. The MIMO system is formed by making 10 seven-shaped coupled fed slot antenna elements excited at two different resonant modes and integrated into the system circuit board. By implementing the spatial and polarization diversity techniques, high isolation better than 28 dB between any pair of antenna elements is achieved. The proposed 10-port MIMO antenna array is fabricated and measured. Significant radiation efficiency is obtained, ranging from 65 to 82% for both bands. The antenna gain in the required operating band is substantial, around 3–3.8 dBi. Further, the MIMO parameters such as envelope correlation co-efficient, channel capacity, and total active reflection co-efficient are calculated. The antenna's robustness is estimated by analyzing the user hand effects and specific absorption rate (SAR). The measured results are well agreed with the simulated results.


Sign in / Sign up

Export Citation Format

Share Document