scholarly journals Migration of exotic species of ammonites during highstands of sea level

1992 ◽  
Vol 6 ◽  
pp. 324-324
Author(s):  
Keith Young

In northeastern Chihuahua and Trans-Pecos Texas, in the early Late Albian zone of Hysteroceras varicosum occurs the Boeseites romeri (Haas) fauna with B. romeri (Hass), B. perarmata (Hass), B. aff. barbouri (Haas), B. cf. howelli (Haas), B.proteus (Haas), Prohysteroceras cf. P. hanhaense Haas, Elobiceras sp., and Dipoloceras (?) sp. B. perarmata has also been collected at Cerro Mercado, near Monclova, Coahuila. Haas originally described this fauna from Angola. Now, from rocks in the same zone in the Sierra Mojada, Coahuila, Mexico, there is a form related to if not identical with Hysteroceras famelicum Van Hoepen, also originally described from Angola and also from the zone of Hysteroceras varicosum.These fossils are known only from southern North America and Angola; they have not been described from the European Tethys. In 1984 I suggested that during the highstand of sea level of the early Late Albian (Hysteroceras varicosum zone) these ammonites migrated from Angola to Mexico and Trans-Pecos Texas via an epeiric seaway extending across the sag between South America and Africa proposed by Kennedy and Cooper. This would be twelve to fifteen million years prior to an oceanic connection between the North and South Atlantic.I would now ask, can similar epeiric seas and highstands of sea level explain the migration of successive European, Tethyan, Jurassic ammonite faunas down the Mozambique Channel and around the horn of Africa into the Neuquen Basin of Argentina before Africa and Antarctica separated, as proposed by Spath.

2013 ◽  
Vol 40 (22) ◽  
pp. 5926-5931 ◽  
Author(s):  
Marcio L. Vianna ◽  
Viviane V. Menezes

2019 ◽  
Author(s):  
Hamed D. Ibrahim

North and South Atlantic lateral volume exchange is a key component of the Atlantic Meridional Overturning Circulation (AMOC) embedded in Earth’s climate. Northward AMOC heat transport within this exchange mitigates the large heat loss to the atmosphere in the northern North Atlantic. Because of inadequate climate data, observational basin-scale studies of net interbasin exchange between the North and South Atlantic have been limited. Here ten independent climate datasets, five satellite-derived and five analyses, are synthesized to show that North and South Atlantic climatological net lateral volume exchange is partitioned into two seasonal regimes. From late-May to late-November, net lateral volume flux is from the North to the South Atlantic; whereas from late-November to late-May, net lateral volume flux is from the South to the North Atlantic. This climatological characterization offers a framework for assessing seasonal variations in these basins and provides a constraint for climate models that simulate AMOC dynamics.


2014 ◽  
Vol 1 (2) ◽  
pp. 7-9
Author(s):  
Sergio Escobar-Lasso ◽  
Margarita Gil-Fernández

The long-tailed weasel Mustela frenata Lichtenstein, 1831 has the greatest geographical range among mustelids in the western hemisphere (Harding & Dragoo 2012). The range of M. frenata extends from the north of the United States, near the Canadian border, to northern South America (Sheffield & Thomas 1997), from sea level to 3800 masl (Sheffield & Thomas 1997, Reid & Helgen 2008).


2000 ◽  
Vol 74 (3) ◽  
pp. 444-463 ◽  
Author(s):  
Xueping Ma ◽  
Jed Day

The cyrtospiriferid brachiopod genus Tenticospirifer Tien, 1938, is revised based on restudy of the type species from the Frasnian (Late Devonian) of the Russian Platform. As revised the genus includes cyrtospiriferid species with pyramidal ventral valves, catacline ventral interareas, a narrow delthyrium, few sinal plications, and lack a median dorsal septum and pseudodeltidium. All species retained in the genus are of Givetian and Frasnian age. All Famennian age species described from South China and North America are rejected from the genus. It appears that Tenticospirifer evolved during the early Givetian in western Europe and remained endemic to that region during the remainder of the Givetian. Successive migrations of Tenticospirifer from eastern Laurussia to North America, then to South China and possibly Australia, coincided with middle and late Frasnian eustatic sea level rises, respectively. The North American species Spirifera cyrtinaformis Hall and Whitfield, 1872, and related species identified as Tenticospirifer by North American workers, are reassigned to Conispirifer Lyashenko, 1985. Its immigration to and widespread dispersal in carbonate platforms of western Laurussia, northern Gondwana and tropical island arcs (?) coincided with a major late Frasnian eustatic sea level rise. The new family Conispiriferidae is proposed with Conispirifer Lyashenko, 1985, selected as the type genus. The new family also includes the new genus Pyramidaspirifer with Platyrachella alta Fenton and Fenton, 1924, proposed as the type species. The affinity of the new family remains uncertain pending restudy of key genera currently included in the Superfamily Cyrtospiriferoidea. Available data from the Devonian brachiopod literature indicate that species of Pyramidaspirifer are restricted to late Frasnian deposits of central and western North America.


1992 ◽  
Vol 6 ◽  
pp. 149-149
Author(s):  
Jisuo Jin

Three rhynchonellid brachiopod genera, Hiscobeccus, Lepidocyclus, and Hypsiptycha, are the most diagnostic elements of the Lepidocyclus fauna of North America in Late Ordovician time. These are characterized by relatively large, strongly biconvex to globular shells with coarse imbricating growth lamellae and, internally, with septiform cardinal processes in brachial valves. Among the three genera, Hiscobeccus appears the earliest, now known from rocks of late Trentonian-Edenian age in the Canadian Rocky Mountains and Mackenzie Mountains. Morphologically, Hiscobeccus is distinguished from the other two genera by its open delthyrium in the pedicle valve. Early forms of Hiscobeccus show close morphological similarity to Rhynchotrema in their non-globular biconvex shells covered by strong growth lamellae only in the anterior portions. It has been suggested that Hiscobeccus evolved from the Rhynchotrema wisconsinense stock through increase in shell size, globosity, and strength of growth lamellae. Earliest species of Rhynchotrema has been documented convincingly from rocks of early Trentonian age, and the derivation of Hiscobeccus most likely took place during the mid-Trentonian. Lepidocyclus and Hypsiptycha evolved from either Rhynchotrema or Hiscobeccus by developing a pair of deltidial plates covering the delthyrium.Rhynchotrema and other rhynchonellids that evolved before mid-Trentonian time are common to the North American (Laurentian) and the Siberia-Kazakhstan paleocontinents. In contrast, Hiscobeccus, Lepidocyclus, and Hypsiptycha that evolved after the mid-Trentonian are virtually restricted to Laurentia. Therefore, Rhynchotrema marked the last successful intercontinental migration of rhynchonellids during their Llandeilian-Caradocian cosmopolitanism. The pronounced provincialism of the North American Lepidocyclus fauna may have been caused by a number of factors. Facies control is not likely the explanation because these rhynchonellids occur in nearly all the inland and marginal platform seas of Laurentia and commonly are found together in the same types of rocks. Plate tectonics and sea-level changes are considered major causes. The Ordovician rhynchonellids lived in shallow marine (intertidal-subtidal) environments and were incapable of crossing vast, deep oceanic barriers because of their sedentary mode of life and short-lived motile larval stages. The widening of the ocean between North America and Siberia, coupled with high sea-level stand, may have created a sufficiently wide oceanic barrier to interrupt faunal mixing between the two paleocontinents by late Trentonian time. Moreover, the rise in sea level would have resulted in the disappearance of island faunas, which could have served as stepping stones for intercontinental migration of shallow-water benthic faunas during low sea-level stand.


2011 ◽  
Vol 91 (4) ◽  
pp. 437-446 ◽  
Author(s):  
Polly G. Hill ◽  
Isabelle Mary ◽  
Duncan A. Purdie ◽  
Mikhail V. Zubkov

2010 ◽  
Vol 29 (2) ◽  
pp. 163-176 ◽  
Author(s):  
Benjamin Sames ◽  
Robin Whatley ◽  
Michael E. Schudack

Abstract. The genus Praecypridea gen. nov. (Cypridoidea, Family Cyprideidae Martin, 1940) is described and thus far comprises four species: the type species Praecypridea acuticyatha (Schudack, 1998) comb. nov., Praecypridea postelongata (Oertli, 1957) comb. nov., Praecypridea suprajurassica (Mojon, Haddoumi & Charriére, 2009) comb. nov. and Praecypridea acuta (Moos, 1959 in Wicher, 1959) comb. nov. Representatives of the new genus have been described from the Middle to Late Jurassic of Europe, North America and Africa and the Early Cretaceous of South America, with other presumed representatives also occurring in the Early Cretaceous. Species of Praecypridea are considered to represent members of the ancestral lineage of the extinct genus Cypridea Bosquet, representatives of which flourished in non-marine habitats of latest Jurassic to Early Cretaceous age and account for the first period of abundance of the non-marine Cypridoidea.


Sign in / Sign up

Export Citation Format

Share Document