High Planting Rates Improve Weed Suppression, Yield, and Profitability in Organically-Managed, No-till–Planted Soybean

2017 ◽  
Vol 31 (4) ◽  
pp. 536-549 ◽  
Author(s):  
Jeffrey A. Liebert ◽  
Matthew R. Ryan

High soybean populations have been shown to hasten canopy closure, which can improve both weed suppression and soybean yield. In conventional soybean production, the high cost of genetically engineered seed and seed treatments have led growers to plant at lower rates to maximize profitability. For organic farmers, market price premiums are typically double the price received for conventional soybean. Without chemical or mechanical weed management, cultural practices are particularly important for adequate weed suppression in cover crop–based organic no–till planted soybean production. In 2014, an experiment was conducted in Aurora and Hurley, New York, to assess the effects of increasing soybean planting rates on weed suppression, soybean yield, and partial economic return. Five planting rates ranging from 195,000 to 914,000 seedsha−1were arranged in a randomized complete block design. As soybean planting rate increased, weed biomass decreased and soybean yield increased at both sites. An asymptotic model described the relationship between increasing soybean planting rate and yield, and the estimated maximum yield was 2,504 kgha−1in Aurora and 3,178 kgha−1in Hurley. Despite high soybean populations, minimal lodging was observed. Partial returns decreased beyond the predicted economically optimal planting rate of 646,000 seeds ha−1in Aurora and 728,000 seeds ha−1in Hurley as higher seed costs were no longer offset by yield gains. Based on our results, planting rates that are more than double the recommended rate of 321,000 seeds ha−1for wide row (≥76 cm) conventional soybean management in New York can enhance weed suppression, increase yield, and improve profitability in organic no-till planted soybean production.

1998 ◽  
Vol 12 (1) ◽  
pp. 32-36 ◽  
Author(s):  
William G. Johnson ◽  
Jeffrey S. Dilbeck ◽  
Michael S. Defelice ◽  
J. Andrew Kendig

Field studies were conducted at three locations in 1993 and 1994 to evaluate weed control and crop response to combinations of glyphosate, metolachlor, 0.5 X and 1 X label rates of chlorimuron plus metribuzin applied prior to planting (PP), and 0.5 X and 1 X label rates of imazethapyr applied early postemergence (EPOST) or postemergence (POST) in no-till narrow-row soybean production. Giant foxtail densities were reduced with sequential PP followed by (fb) EPOST or POST treatments. Large crabgrass was reduced equivalently with all herbicide combinations involving chlorimuron plus metribuzin PP fb imazethapyr. Common cocklebur control was variable but was usually greater with treatments that included imazethapyr. Ivyleaf morningglory densities were not reduced with any herbicide combinations. Sequential PP fb EPOST or POST treatments tended to provide slightly better weed suppression than PP-only treatments, but the difference was rarely significant. Soybean yields with treatments utilizing 0.5 X rates were usually equal to 1 X rates.


2015 ◽  
Vol 31 (5) ◽  
pp. 429-440 ◽  
Author(s):  
M. Scott Wells ◽  
Carrie M. Brinton ◽  
S. Chris Reberg-Horton

AbstractCover crop mulches have been successful in reducing weed severity in organic soybeans. This study examined six rye cultivars (SRCs) used as cover crops to determine which were most adapted for use with a roller–crimper in the southeastern U.S. To be an effective mulch, a rye cultivar must produce high biomass and reach reproductive growth stage to facilitate mechanical termination via the roller–crimper prior to soybean planting. Rye cultivars were planted at three locations in North Carolina over the 2009 and 2010 growing seasons. Each rye cultivar was mechanically terminated via a roller–crimper implement. Rye cover crops were terminated on two dates and soybeans were immediately no-till planted into the mulch. In 2009, all rye cultivars produced greater than 9000 kg ha−1 rye biomass dry matter (DM) with the exception of Rymin at Plymouth (2009), but in 2010 only the early flowering cultivars produced in excess of 9000 kg ha−1 DM. There were no detectable soybean yield differences between the SRCs and the weed-free checks, and weed control was excellent across all SRCs at both Plymouth and Salisbury (2009). After an unseasonably cold and wet winter in 2010, the late flowering rye cultivars were not fully controlled by the early termination date due to delayed maturation (less than 65% control at 2 WAP) whereas the early flowering cultivars were fully controlled (100% control at 2 WAP). Rye biomass production was below 9000 kg ha−1 DM for the late flowering and dough development rye cultivars. The early-terminated rye plots had greater weed coverage across all SRCs than those from the late termination date (P < 0.01). However, weeds did not impact soybean yield for either of the termination dates. Soybean yield in 2010 was modeled with rye biomass and soybean population used as covariates, and for both termination dates, soybean yield was proportional to rye biomass production. Early flowering rye cultivars offer producers the widest range of termination opportunities that best coincide with their cash crop planting dates.


2021 ◽  
Vol 17 (AAEBSSD) ◽  
pp. 13-16
Author(s):  
A.V. Bhuwad ◽  
P. M. Haldankar ◽  
B. R. Salvi ◽  
C. D. Pawar ◽  
N. B. Gokhale

Mango cv. Alphonso is established on more than 90 per cent of area in Konkan region of Maharashtra. Early flowering is for early harvest which assures premium rate in market. In recent years climatic aberrations such as delayed rains especially during initiation of flowering badly affected the performance of Alphonso. The delayed flowering further delay fruit development and harvesting. The late harvested fruits often trapped in early rains and fetches low market price. An attempt was made to estimate benefit ratio and net returns of various non-chemical approaches for mango cv. Alphonso in relation to early induction of flowering which lead to early harvesting to earn lucrative market price. The experiment entitled “Economics of chemical and non-chemical approaches for induction of early flowering in mango cv. Alphonso” which was conducted at college of Horticulture, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli during the year 2018-19 and 2019-20. Experiment was laid out in randomized block design with seven treatments viz., T1- removal of new shoots, T2- removal of old shoots below new, T3- foliar spray of paclobutrazol @ 500 ppm, T4- foliar spray of paclobutrazol @ 1000 ppm, T5- foliar spray of ortho-phosphoric acid @ 0.5 %, T6- foliar spray of ortho-phosphoric acid @ 1 % and T7- control which were replicated at thrice. From the pooled analysis, early induction of flowering was rapid in T1(35.83 days) and had maximum yield (6.19 t/ha), higher gross return (Rs.309657), maximum net profit (Rs.217781.70) and highest B:C ratio (3.37) which was followed by T2 (3.34), T3 (2.99) and T4 (2.75). The minimum yield (2.90 t/ha), gross return (Rs. 124860), minimum net profit (Rs. 65509.20)with minimum B:C ratio were found in control.


Weed Science ◽  
2017 ◽  
Vol 65 (3) ◽  
pp. 426-439 ◽  
Author(s):  
Jeffrey A. Liebert ◽  
Antonio DiTommaso ◽  
Matthew R. Ryan

Maximizing cereal rye biomass has been recommended for weed suppression in cover crop–based organic no-till planted soybean; however, achieving high biomass can be challenging, and thick mulch can interfere with soybean seed placement. An experiment was conducted from 2012 to 2014 in New York to test whether mixing barley and cereal rye would (1) increase weed suppression via enhanced shading prior to termination and (2) provide acceptable weed suppression at lower cover crop biomass levels compared with cereal rye alone. This experiment was also designed to assess high-residue cultivation as a supplemental weed management tool. Barley and cereal rye were seeded in a replacement series, and a split-block design with four replications was used with management treatments as main plots and cover crop seeding ratio treatments (barley:cereal rye, 0:100, 50:50, and 100:0) as subplots. Management treatments included high-residue cultivation and standard no-till management without high-residue cultivation. Despite wider leaves in barley, mixing the species did not increase shading, and cereal rye dominated cover crop biomass in the 50:50 mixtures in 2013 and 2014, representing 82 and 93% of the biomass, respectively. Across all treatments, average weed biomass (primarily common ragweed, giant foxtail, and yellow foxtail) in late summer ranged from 0.5 to 1.1 Mg ha−1in 2013 and 0.6 to 1.3 Mg ha−1in 2014, and weed biomass tended to decrease as the proportion of cereal rye, and thus total cover crop biomass, increased. However, soybean population also decreased by 29,100 plants ha−1for every 1 Mg ha−1increase in cover crop biomass in 2013 (P=0.05). There was no relationship between cover crop biomass and soybean population in 2014 (P=0.35). Soybean yield under no-till management averaged 2.9 Mg ha−1in 2013 and 2.6 Mg ha−1in 2014 and was not affected by cover crop ratio or management treatment. Partial correlation analyses demonstrated that shading from cover crops prior to termination explained more variation in weed biomass than cover crop biomass. Our results indicate that cover crop management practices that enhance shading at slightly lower cover crop biomass levels might reduce the challenges associated with excessive biomass production without sacrificing weed suppression in organic no-till planted soybean.


Author(s):  
V. A. Triatmoko ◽  
S. Minardi ◽  
H. Widijanto ◽  
J. Syamsiyah

Alfisols have inherent potential to increase Indonesia’s soybean production, however, alfisols also known for its low phosphorus availability. Field experiment using ameliorants consisting of quail manure, zeolites and rock phosphate was conducted to increase phosphorus (P) availability and soybean production. The aim of this study is to evaluate the effects of ameliorant combinations for improving phosphorus availability and its correlation to soybean production in alfisols. Randomized complete block design with single factor was used, with 9 combinations of ameliorants under study (P0 – P8). Obtained results showed that phosphorus availability is increased up to 72.6% and soybean yield upto 75.9%. Correlation of phosphorus availability and soybean production was significant (r = 0.854). Finally, the best treatment to increase phosphorus availability and soybean production is quail manure 2.5 t.ha-1 + rock phosphate 5 t.ha-1).


2021 ◽  
Vol 3 ◽  
Author(s):  
Uriel D. Menalled ◽  
Sarah J. Pethybridge ◽  
Chris J. Pelzer ◽  
Richard G. Smith ◽  
Antonio DiTommaso ◽  
...  

No-till planting crops into rolled-crimped cover crops can improve soil health while reducing labor and fuel requirements compared with traditional tillage-based production. However, little information is available to help farmers optimize the management of organic no-till planted crops. Weed suppression, crop yield, and profitability were assessed across soybean [Glycine max (L.) Merr.] seeding rates and soil nitrogen environments in an experiment conducted at two sites in central New York. Soybeans were no-till planted into rolled-crimped cereal rye (Secale cereale L.) at 0, 185,000, 371,000, 556,000, and 741,000 seeds ha−1. Three rates (0, 63, or 125 kg ha−1) of sodium nitrate (15-0-2) were applied across seeding rates to create different soil nitrogen environments. When pooled over sites, the lowest weed biomass occurred at the highest soybean density in the lowest soil nitrogen environment. An interaction was observed between soybean seeding rate and nitrogen treatments on weed communities. Soybean yield increased asymptotically with crop density and was not affected by nitrogen or site treatments. When pooled over nitrogen treatments and sites, partial returns to the soybean seeding rates were maximized at $2,238 ha−1 with 527,800 seeds ha−1. Results suggest that crop density is an important lever for optimizing weed suppression and crop yield in organic no-till soybean, and that managing for low soil nitrogen conditions may further enhance weed suppression while maintaining high yields.


Weed Science ◽  
2014 ◽  
Vol 62 (3) ◽  
pp. 501-511 ◽  
Author(s):  
M. Scott Wells ◽  
S. Chris Reberg-Horton ◽  
Steven B. Mirsky

A four site-year study was conducted in North Carolina to evaluate the effects of soybean planting timing and row spacing on soil moisture, weed density, soybean lodging, and yield in a cover crop-based no-till organic soybean production system. Soybean planting timing included roll-kill/planting and roll-kill/delayed planting where soybean planting occurred either on the same day or approximately 2 wk later, respectively. Soybean row spacing included 19, 38, and 76 cm, and all treatments included a weedy check and weed-free treatment. Rye biomass production averaged above 10,000 kg ha−1dry matter, which resulted in good weed control across all sites. Despite having good weed control throughout all treatments, weed coverage was highest in the 76-cm row-space treatment when compared to both the 19-cm and 38-cm row spacing in two of the four site-years. Soybean lodging is a potential consequence of no-till planting of soybeans in high residue mulches, and of the three row spacings, the 19-cm spacing exhibited the greatest incidence of lodging. Row spacing also influenced soybean yield; the 19- and 38-cm row spacing out yielded the 76-cm spacing by 10%. Soil volumetric water content (VWC) was higher in the cereal rye mulch treatments compared to the no rye checks. Furthermore, delaying soybean planting lowered soil water evaporation. However, the increased soil VWC in the rolled-rye treatment did not translate into increased soybean yield. The rolled-rye treatment exhibited significant (P < 0.01) increases in soil VWC when compared to the no-rye treatment at three of the four site-years. These results highlight planting date flexibility and potential risk to lodging that producers face when no-till planting organic soybeans.


2013 ◽  
Vol 27 (1) ◽  
pp. 193-203 ◽  
Author(s):  
Steven B. Mirsky ◽  
Matthew R. Ryan ◽  
John R. Teasdale ◽  
William S. Curran ◽  
Chris S. Reberg-Horton ◽  
...  

Cover crop–based organic rotational no-till soybean production has attracted attention from farmers, researchers, and other agricultural professionals because of the ability of this new system to enhance soil conservation, reduce labor requirements, and decrease diesel fuel use compared to traditional organic production. This system is based on the use of cereal rye cover crops that are mechanically terminated with a roller-crimper to create in situ mulch that suppresses weeds and promotes soybean growth. In this paper, we report experiments that were conducted over the past decade in the eastern region of the United States on cover crop–based organic rotational no-till soybean production, and we outline current management strategies and future research needs. Our research has focused on maximizing cereal rye spring ground cover and biomass because of the crucial role this cover crop plays in weed suppression. Soil fertility and cereal rye sowing and termination timing affect biomass production, and these factors can be manipulated to achieve levels greater than 8,000 kg ha−1, a threshold identified for consistent suppression of annual weeds. Manipulating cereal rye seeding rate and seeding method also influences ground cover and weed suppression. In general, weed suppression is species-specific, with early emerging summer annual weeds (e.g., common ragweed), high weed seed bank densities (e.g. > 10,000 seeds m−2), and perennial weeds (e.g., yellow nutsedge) posing the greatest challenges. Due to the challenges with maximizing cereal rye weed suppression potential, we have also found high-residue cultivation to significantly improve weed control. In addition to cover crop and weed management, we have made progress with planting equipment and planting density for establishing soybean into a thick cover crop residue. Our current and future research will focus on integrated multitactic weed management, cultivar selection, insect pest suppression, and nitrogen management as part of a systems approach to advancing this new production system.


2021 ◽  
pp. 1-20
Author(s):  
Nikola Arsenijevic ◽  
Ryan DeWerff ◽  
Shawn Conley ◽  
Matthew Ruark ◽  
Rodrigo Werle

The role of weed suppression by the cultivated crop is often overlooked in annual row cropping systems. Agronomic practices such as planting time, row spacing, tillage and herbicide selection may influence the time of crop canopy closure. The objective of this research was to evaluate the influence of the aforementioned agronomic practices and their interaction with the adoption of an effective preemergence (PRE) soil residual herbicide program on soybean canopy closure and yield. A field experiment was conducted in 2019 and 2020 at Arlington, WI as a 2×2×2×2 factorial in a randomized complete block design, including early (late-April) and standard (late-May) planting time, narrow (38 cm) and wide (76 cm) row spacing, conventional tillage and no-till, and soil-applied PRE herbicide (yes and no; flumioxazin 150 g ai ha−1 + metribuzin 449 g ai ha−1 + pyroxasulfone 190 g ai ha-1). All plots were maintained weed-free throughout the growing season. In both years, early planted soybeans reached 90% green canopy cover (T90) before (7 to 9 d difference) and yielded more (188 to 902 kg ha−1 difference) than the standard planted soybeans. Narrow-row soybeans reached T90 earlier than wide-row soybeans (4 to 7 d difference), but yield was similar between row spacing treatments. Conventional tillage had a higher yield when compared to a no-till system (377 kg ha−1 difference). The PRE herbicide slightly delayed T90 (4 d or less) but had no impact on yield. All practices investigated herein influenced the time of soybean canopy closure but only planting time and tillage impacted yield. Planting soybeans earlier and reducing their row spacing expedites the time to canopy closure. The potential delay in canopy development and yield loss if soybeans are allowed to compete with weeds early in the season would likely outweigh the slight delay in canopy development by an effective PRE herbicide.


2018 ◽  
Vol 61 (2) ◽  
pp. 671-680 ◽  
Author(s):  
Muhammad Jamal Khan ◽  
Graham Ian Brodie ◽  
Dorin Gupta ◽  
Sally Foletta

Abstract. Herbicide resistance has prompted the development of a chemical-free weed management practice in no-till farming systems. In this study, we examined the effect of pre-emergence microwave (MW) soil treatment for weed management in a no-till wheat production system in Australia. One-time MW soil treatment (2.45 GHz, 600 W, 120 s) was applied to plots that were arranged in a randomized complete block design with five replicates. The MW energy was projected through a horn antenna with aperture dimensions of 5.5 cm × 11 cm into the topsoil (0 to 6 cm) horizon. The applied MW energy density in the treated plots (2.6 m2), which was calculated by Simpson’s numerical surface integral approximation, was approximately 560 J cm-2. This achieved an increase in soil temperature of about 75°C to 80°C. This temperature induced a 65% to 80% reduction in weed establishment through thermal devitalization of the weed seedbank, compared to the untreated control plots. In addition, a substantial increase in wheat grain yield of 39.2% was achieved through MW energy application (7.8 t ha-1) compared to non-MW conditions (5.6 t ha-1). In summary, this non-chemical weed management strategy promises to effectively control herbicide-resistant weeds and sustain dryland wheat yields. Keywords: Microwave energy, Soil, Weed Suppression, Wheat.


Sign in / Sign up

Export Citation Format

Share Document