Benzobicyclon Activity on Common Louisiana Rice Weeds

2018 ◽  
Vol 32 (3) ◽  
pp. 314-318 ◽  
Author(s):  
Benjamin M. McKnight ◽  
Eric P. Webster ◽  
David C. Blouin

AbstractA study was conducted at three locations in Louisiana to evaluate the response of common Louisiana rice weed species to different rates of application of benzobicyclon herbicide. Benzobicyclon was applied at 31, 62, 123, 185, 246, 493, 739, 986, and 1,232 g ai ha–1into flooded field conditions when ducksalad was at the first elongated-leaf stage. Barnyardgrass, false pimpernel, and yellow nutsedge control never exceeded 50% from any rate of benzobicyclon applied, averaged across evaluation timing. Ducksalad control, averaged across evaluation timing, was 83% when treated with 493 g ha−1and did not increase when treated with higher rates of benzobicyclon. At 42 d after treatment (DAT), purple ammannia and Indian toothcup treated with 185 and 246 g ha–1of benzobicyclon were controlled 58% and 81%, respectively, and did not differ in control compared with higher rates of benzobicyclon. All weeds were hand-harvested from each plot and separated by species at the conclusion of the study. No differences in fresh-weight biomass were observed for barnyardgrass, false pimpernel, purple ammannia, or yellow nutsedge. Treatment with benzobicyclon at ≥62 g ha–1resulted in reduced ducksalad fresh weight 42 DAT compared with the nontreated sample. Indian toothcup fresh weight was reduced 77% to 96% compared with the nontreated sample when treated with benzobicyclon at 246 to 1,232 g ha–1.

2004 ◽  
Vol 18 (4) ◽  
pp. 1031-1036 ◽  
Author(s):  
Samunder Singh ◽  
Megh Singh

Efficacy of trifloxysulfuron with and without surfactant was evaluated against balsamapple, cat's claw vine, Florida beggarweed, hairy beggarticks, ivyleaf morningglory, johnsongrass, prickly sida, redroot pigweed, sicklepod, strangler vine, tall morningglory, and yellow nutsedge at 21, 42, and 63 g ai/ha applied at the four- or six-leaf stages and compared with glyphosate at 280, 560, and 840 g ae/ha. Delayed application from the four- to six-leaf stage significantly reduced trifloxysulfuron efficacy; reduction was less with glyphosate. Trifloxysulfuron plus 0.25% X-77 was more effective on the four-leaf stage than on the six-leaf stage plants of redroot pigweed, johnsongrass, hairy beggarticks, strangler vine, and prickly sida; effect was similar on yellow nutsedge, sicklepod, Florida beggarweed, balsamapple, ivyleaf morningglory, and tall morningglory. Trifloxysulfuron at 63 g/ha plus surfactant reduced the fresh weight of all test plants more than 80% compared with control, except prickly sida, strangler vine, and cat's claw vine. Glyphosate was less effective than trifloxysulfuron plus surfactant against tall morningglory, sicklepod, ivyleaf morningglory, and yellow nutsedge but was significantly better against balsamapple, prickly sida, and cat's claw vine. None of the herbicides provided satisfactory control of cat's claw vine, strangler vine, and prickly sida.


2021 ◽  
pp. 1-23
Author(s):  
Luqi Li ◽  
Matthew Sousek ◽  
Zachary Reicher ◽  
Roch Gaussoin

Abstract Yellow nutsedge is one of the most widely distributed and troublesome weeds in the world. Field and greenhouse studies were conducted to optimize strategies for increased yellow nutsedge control in turfgrass with halosulfuron and sulfentrazone. In the field study in yellow nutsedge and perennial ryegrass mixture, single or sequential applications (three weeks after initial) of halosulfuron or sulfentrazone were made on June 3, June 23, July 15, or August 5 in 2013, 2014, 2015, and 2016. Percent yellow nutsedge control was rated within the same growing season on Sept 17 and the following year on June 3 for carry-over control. Field and greenhouse studies confirm that sequential applications of halosulfuron with a three-week interval resulted in > 95% control in a yellow nutsedge/turfgrass mixture. In a greenhouse study, both herbicides reduced yellow nutsedge root and rhizome dry mass from 39 to 98%, number of new tubers and tuber fresh weight from 38 to 100% and prevented re-emergence. Sequential applications of either herbicide within a three-week interval early post emergence is recommended for optimal control. Herbicide application to yellow nutsedge using halosulfuron and sulfentrazone should be made as early as possible postemergence, preferably at the three- to five-leaf stage or 200 to 250 growing degree days (GDD, 10 C base). Mowing can be an effective method to reduce yellow nutsedge growth. Mowing at 7.6 cm weekly reduced yellow nutsedge rhizome dry mass by 55% and number of new tubers formed by 63% in the greenhouse study. Physical removal of yellow nutsedge plants such as hand-pulling can be an effective method to manage yellow nutsedge and is most effective at the three- to five-leaf stage (200 to 250 GDD). End-users can maximize yellow nutsedge control by integrating early herbicide treatments and cultural practices such as mowing and hand-pulling.


1995 ◽  
Vol 9 (4) ◽  
pp. 773-778 ◽  
Author(s):  
Krishna N. Reddy ◽  
Martin A. Locke ◽  
Kevin D. Howard

Greenhouse studies were conducted to investigate the effects of adjuvant and rainfall on bentazon spray retention, efficacy, and foliar washoff in hemp sesbania, sicklepod, smooth pigweed, and velvetleaf. Bentazon was applied at 0.28 to 2.24 kg ai/ha with Agri-Dex, a crop oil concentrate (COC) or Kinetic, an organiosilicone-nonionic surfactant blend (OSB) when weeds were at the three- to five-leaf stage. Plants were subjected to 2.5 cm simulated rainfall for 20 min at 1 and 24 h after application of bentazon. Shoot fresh weight reduction assessed 2 wk after treatment was similar with either adjuvant on velvetleaf and smooth pigweed. OSB enhanced bentazon efficacy in hemp sesbania and sicklepod as compared to COC. Rainfall at 1 h after application generally reduced bentazon activity in all weeds. OSB maintained bentazon activity in hemp sesbania when subjected to rainfall at 1 h after application as compared to COC. Overall, bentazon spray retention on plants was 9 to 550% higher with OSB as compared to COC among the species at 1 h after application. Amount of bentazon residue washed off from the foliage by rainfall within a weed species was relatively similar for both adjuvants except in smooth pigweed and ranged from 39 to 98% among the four weed species at 1 h after application. OSB exhibited specificity for certain weed species and the potential to minimize bentazon spray reaching the soil by increasing deposition.


2018 ◽  
Vol 36 (3) ◽  
pp. 114-118
Author(s):  
Debalina Saha ◽  
S. Christopher Marble ◽  
Annette Chandler

Abstract The objective of this research was to evaluate dithiopyr and isoxaben combinations and indaziflam (Marengo) for early postemergence control of woodland bittercress (Cardamine flexuosa) and yellow woodsorrel at 4 different early growth stages. Herbicides evaluated included sprayable formulations of isoxaben, dithiopyr + isoxaben, dithiopyr, indaziflam, and prodiamine + isoxaben without any surfactants. Woodland bittercress growth stages included seed production (extra-large), recently flowered (large), 6 to 9 leaf (medium) or in 2 to 5 leaf stage (small), while yellow woodsorrel growth stages included 8 to 12 leaf stage (extra-large), 4 to 6 leaf stage (large), 2 to 4 leaf stage (medium) and cotyledon to 1 leaf stage (small). Shoot fresh weight data showed all treatments provided ≤98% of woodland bittercress at the small stage. Dithiopyr + isoxaben (98%), isoxaben (90%), and indaziflam (93%) provided the highest level of woodland bittercress control at the medium stage and were the only treatments providing acceptable control (≥80%). In the large stage, dithiopyr + isoxaben provided acceptable control (80%) and outperformed other treatments. All treatments with the exception of isoxaben generally provided acceptable control of yellow woodsorrel up to the large growth stage. Only indaziflam (86% control) provided acceptable control at the extra-large stage. Index words: herbicide, postemergence weed control, container-grown plants, phytotoxic damages. Herbicides used in this study: isoxaben (Gallery® 4SC) N-[3-(1-ethyl-1-methylpropyl)- 5-isoxazolyl]-2,6-dimethoxybenzamide; dithiopyr (Dimension® 2EW) S,S'-dimethyl 2-(difluoromethyl)-4- (2-methylpropyl)-6-(trifluoromethyl)- 3,5-pyridinedicarbothioate; indaziflam (Specticle® FLO) N-[(1R,2S)-2,3-dihydro-2,6-dimethyl-1H-inden-1-yl]-6-(1-fluoroethyl)-1,3,5-triazine-2,4-diamine; prodiamine + isoxaben (Gemini® SC) 2,4-dinitro-N3,N3-dipropyl-6-(trifluoromethyl)-1,3-benzenediamine + N-[3-(1-ethyl-1-methylpropyl)- 5-isoxazolyl]-2,6-dimethoxybenzamide; dithiopyr + isoxaben (Dimension® + Gallery®) S,S'-dimethyl 2-(difluoromethyl)-4- (2-methylpropyl)-6-(trifluoromethyl)- 3,5-pyridinedicarbothioate + N-[3-(1-ethyl-1-methylpropyl)- 5-isoxazolyl]-2,6-dimethoxybenzamide. Weed species evaluated: woodland bittercress (flexuous bittercress) (Cardamine flexuosa With.); yellow woodsorrel (Oxalis stricta L.).


Weed Science ◽  
2009 ◽  
Vol 57 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Wesley J. Everman ◽  
Cassandra R. Mayhew ◽  
James D. Burton ◽  
Alan C. York ◽  
John W. Wilcut

Greenhouse studies were conducted to evaluate14C-glufosinate absorption, translocation, and metabolism in glufosinate-resistant corn, goosegrass, large crabgrass, and sicklepod. Glufosinate-resistant corn plants were treated at the four-leaf stage, whereas goosegrass, large crabgrass, and sicklepod were treated at 5, 7.5, and 10 cm, respectively. All plants were harvested at 1, 6, 24, 48, and 72 h after treatment (HAT). Absorption was less than 20% at all harvest intervals for glufosinate-resistant corn, whereas absorption in goosegrass and large crabgrass increased from approximately 20% 1 HAT to 50 and 76%, respectively, 72 HAT. Absorption of14C-glufosinate was greater than 90% 24 HAT in sicklepod. Significant levels of translocation were observed in glufosinate-resistant corn, with14C-glufosinate translocated to the region above the treated leaf and the roots up to 41 and 27%, respectively. No significant translocation was detected in any of the weed species at any harvest timing. Metabolites of14C-glufosinate were detected in glufosinate-resistant corn and all weed species. Seventy percent of14C was attributed to glufosinate metabolites 72 HAT in large crabgrass. Less metabolism was observed for sicklepod, goosegrass, and glufosinate-resistant corn, with metabolites composing less than 45% of detectable radioactivity 72 HAT.


1996 ◽  
Vol 10 (2) ◽  
pp. 253-257 ◽  
Author(s):  
Joan A. Dusky ◽  
William M. Stall

Imazethapyr was evaluated PRE and POST in five lettuce types and chicory under Florida field conditions. The relative sensitivity of leafy crop vigor (most sensitive to most tolerant) to imazethapyr PRE, based on 20% inhibition determined using regression analysis, was as follows: Boston > bibb > crisphead > romaine > leaf > escarole > endive. Leafy crop injury increased as the rate of imazethapyr applied POST increased, with all leafy crops responding in a similar manner. Surfactant addition increased imazethapyr phytotoxicity. Imazethapyr PRE treatments at 0.067 kg ai/ha provided greater than 80% control of livid amaranth, common purslane, flatsedge, and common lambsquarters. Imazethapyr POST at 0.067 kg/ha, with surfactant provided control greater than 85% of all weed species. Greater than 85% spiny amaranth control was provided by imazethapyr POST at 0.017 kg/ha. Use of surfactant with imazethapyr did not improve spiny amaranth control over imazethapyr with no surfactant. POST treatments did not decrease leafy crop yield compared with the hand-weeded check. Imazethapyr applied PRE reduced crop yield compared to the POST treatments and the hand-weeded control.


1991 ◽  
Vol 9 (1) ◽  
pp. 38-40 ◽  
Author(s):  
Chris A. Martin ◽  
Harry G. Ponder ◽  
Charles H. Gilliam

Abstract Two tests were conducted to evaluate weed penetration up through landscape fabrics. The degree of weed suppression varied depending on the specific landscape fabric. No landscape fabric gave total suppression of weeds tested. Sicklepod (Cassia obtusifolia L.) and smallflower morningglory (Jacquemontia tamnifolia (L.) Grisebach.) were inhibited by all landscape fabrics. Growth of pigweed (Aranthus sp.), bermudagrass (Cynodon datylon (L.) Persoon.), yellow nutsedge (Cyperus esculentus L.), and johnsongrass (Sorghum halepense (L.) Persoon.) was suppressed by certain landscape fabrics.


Weed Science ◽  
1985 ◽  
Vol 33 (6) ◽  
pp. 751-754 ◽  
Author(s):  
M. J. Cañal Villanueva ◽  
B. Fernandez Muñiz ◽  
R. Sanchez Tames

Growth and the chlorophyll and carotenoid contents were measured in greenhouse-grown yellow nutsedge (Cyperus esculentusL. ♯ CYPES), following treatment with glyphosate [N-(phosphonomethyl)glycine]. Herbicide was applied as a foliar spray at concentrations of 0.1, 1.0, 5.0, and 10.0 mM. After 2 weeks, growth was inhibited, and chlorosis and leaf apex necrosis were observed. Plant height was reduced, leaf fresh weight was decreased by 40%, and leaf dry weight was slightly affected. Rhizome, tuber, and secondary shoot formation was strongly inhibited, but root development was not affected by glyphosate treatment. With the 10-mM treatment, dry weight of the underground system was reduced by 80%. Chlorophyll and carotenoid levels were decreased by 52 and 54%, respectively, following glyphosate treatment.


2010 ◽  
Vol 24 (4) ◽  
pp. 504-509 ◽  
Author(s):  
Glenn Wehtje ◽  
Charles H. Gilliam ◽  
Stephen C. Marble

Both prodiamine and flumioxazin are used in the nursery production and landscape maintenance industries in the southeastern United States for preemergence weed control. Research was conducted to determine whether a tank mixture of these two herbicides would be more effective than either component applied alone. Prodiamine alone, flumioxazin alone, and a 72 : 28 (by weight) prodiamine–flumioxazin mixture were each applied at a series of rates to containers filled with a pine bark–sand substrate that is typical for nursery production in the southeastern United States. Our intent was to have a rate range that hopefully extended from ineffective to lethal for each treatment series. Subsequent to treatment, containers were overseeded with either large crabgrass, spotted spurge, or eclipta. Percent control was determined by comparing treated weed foliage fresh weight to that of the appropriate nontreated control at 6 and 12 wk after application. ANOVA followed by nonlinear regression was used to evaluate the interaction of prodiamine and flumioxazin when combined and to determine the rate of each treatment series required for 95% control (if applicable) for each of the three weed species. Results varied with weed species. The mixture was synergistic and more cost effective than either of the components applied alone in controlling spotted spurge. With respect to large crabgrass control, the mixture was additive and slightly more cost effective than the components. Eclipta could only be controlled with flumioxazin, and this control was antagonized by the addition of prodiamine.


Sign in / Sign up

Export Citation Format

Share Document