scholarly journals Control of downy brome (Bromus tectorum) and Japanese brome (Bromus japonicus) using glyphosate and four graminicides: effects of herbicide rate, plant size, species, and accession

2019 ◽  
Vol 34 (2) ◽  
pp. 284-291
Author(s):  
Emily P. Metier ◽  
Erik A. Lehnhoff ◽  
Jane Mangold ◽  
Matthew J. Rinella ◽  
Lisa J. Rew

AbstractNonnative annual brome invasion is a major problem in many ecosystems throughout the semiarid Intermountain West, decreasing production and biodiversity. Herbicides are the most widely used control technique but can have negative effects on co-occurring species. Graminicides, or grass-specific herbicides, may be able to control annual bromes without harming forbs and shrubs in restoration settings, but limited studies have addressed this potential. This study focused on evaluating the efficacy of glyphosate and four graminicides to control annual bromes, specifically downy brome and Japanese brome. In a greenhouse, glyphosate and four graminicides (clethodim, sethoxydim, fluazifop-P-butyl, and quizalofop-P-ethyl) were applied at two rates to downy brome plants of different heights (Experiment 1) and to three accessions of downy brome and Japanese brome of one height (Experiment 2). All herbicides reduced downy brome biomass, with most effective control on plants of less than 11 cm and with less than 12 leaves. Overall, quizalofop-P-ethyl and fluazifop-P-butyl treatments were most effective, and glyphosate and sethoxydim treatments least effective. Accessions demonstrated variable response to herbicides: the downy brome accession from the undisturbed site was more susceptible to herbicides than downy brome from the disturbed accession and Japanese brome accessions. These results demonstrate the potential for graminicides to target these annual bromes in ecosystems where they are growing intermixed with desired forbs and shrubs.

Author(s):  
Makbule Baylan ◽  
Gamze Mazı ◽  
Sedat Gündoğdu

In order to put cultured species on the market with high quality and few casualties, many important studies are carried out. Most of the researches are conducted in the development of feed and feed ingredients 30-60% of the production cost in farming. Therefore, in aquaculture, an interest in alternative feed ingredients is moving at a very fast rate. In this context, the use of enzymes, probiotics and prebiotics in animal feed has steadily increased in recent years with reasons such as effective control of fish diseases and prevention of infection, strengthening the immune system of fish, increase of the digestibility, reduction of the feed cost, reduction of larval-term mortality, provision of increase in growth, live weight gain, and getting rid of the negative effects of stress.


Weed Science ◽  
1984 ◽  
Vol 32 (4) ◽  
pp. 489-493 ◽  
Author(s):  
Frank L. Young ◽  
David R. Gealy ◽  
Larry A. Morrow

In the greenhouse, glyphosate [N-(phosphonomethyl)glycine] at 0.6 kg ae/ha applied directly to seeds alone or seeds on the soil surface reduced germination and shoot dry weight of common rye (Secale cerealeL. ♯3SECCE). Paraquat (1,1′-dimethyl-4,4′-bipyridinium ion) applied similarly at 0.6 kg ai/ha reduced germination and shoot dry weight of downy brome (Bromus tectorumL. ♯ BROTE) and wheat (Triticum aestivumL. ‘Daws' ♯ TRZAX). Metribuzin [4-amino-6-tert-butyl-3-(methylthio)-as-triazin-5 (4H)-one] at 0.6 kg ai/ha applied to seeds, soil, or seeds and soil had very little effect on germination, but significantly reduced shoot dry weight of common rye, downy brome, wheat, and jointed goatgrass (Aegilops cylindricaHost. ♯ AEGCY). Pronamide [3,5-dichloro(N-1,1-dimethyl-2-propynyl)benzamide] at 0.6 kg ai/ha, and propham (isopropyl carbanilate) at 3.4 kg ai/ha plus extender (p-chlorophenyl-N-methylcarbamate) at 0.4 kg ai/ha substantially reduced shoot height and dry weight of all species, regardless of application method, with pronamide completely inhibiting shoot elongation and dry-weight production in three of the four species.


1997 ◽  
Vol 11 (2) ◽  
pp. 277-282 ◽  
Author(s):  
Robert G. Wilson

Two experiments were conducted near Scottsbluff, NE, to evaluate the efficacy of fall-and spring-applied herbicides for downy brome control in established alfalfa. Downy brome was effectively removed from established alfalfa, and alfalfa yield increased with fall applications of hexazinone, metribuzin, pronamide, and terbacil. Regression analysis indicated a linear relationship between alfalfa yield and downy brome biomass. Glyphosate or paraquat suppressed downy brome when applied to dormant alfalfa in the spring. If glyphosate or paraquat application was delayed until after alfalfa had resumed spring growth, injury was observed. Alfalfa yield did not increase following spring applications of glyphosate or paraquat.


Weed Science ◽  
1971 ◽  
Vol 19 (1) ◽  
pp. 82-86 ◽  
Author(s):  
G. A. Wicks ◽  
O. C. Burnside ◽  
C. R. Fenster

Downy brome (Bromus tectorumL.) seedling emergence was greatest from soil depths of 1 inch or less, but occasionally seedlings emerged from depths of 4 inches. Downy brome seed covered by soil germinated more rapidly than those seed on the soil surface. More downy brome seedlings emerged, and from greater depths, from coarse-textured soils than fine-textured soils when moisture was not limiting. Soil type did not influence longevity of downy brome seed buried in the soil. Most (98%) 8-month-old downy brome seed buried 8 inches in the soil germinated but did not emerge in 1 year; and none remained viable in the soil after 5 years. The moldboard plow was more effective in reducing downy brome populations than a sweep plow or one-way disk in a continuous winter wheat (Triticum aestivumL.) cropping system.


Weed Science ◽  
1984 ◽  
Vol 32 (S1) ◽  
pp. 26-31 ◽  
Author(s):  
Gail A. Wicks

Downy brome (Bromus tectorumL. # BROTE) may be a troublesome weed in winter small grains, perennial legumes, perennial grasses grown for seed, and orchards. In Nebraska, winter wheat (Triticum aestivumL.) yields have been depressed 30% by downy brome populations of 11 to 22 plants/m2(8). In Oregon, downy brome densities of 108 to 160 and 538 plants/m2reduced yields by 40 and 92%, respectively (22, 23). In Idaho, wheat yields were depressed 20 to 40% with 55 to 110 plants/m2(18). Downy brome has also been shown to lower yields and quality of hay from infested fields of alfalfa (Medicago sativaL.) (29). In perennial grass seed fields, downy brome may cause a serious seed quality problem (16). Some grass seed lots have contained as much as 50 to 75% downy brome seed.


Weed Science ◽  
1985 ◽  
Vol 33 (2) ◽  
pp. 229-232 ◽  
Author(s):  
D. J. Rydrych

Preemergence and postemergence application of metribuzin [4-amino-6-tert-butyl-3-(methylthio)-as-triazine-5(4H)-one] at 0.6 and 1.1 kg ai/ha controlled downy brome (Bromus tectorumL. ♯ BROTE) in winter wheat (Triticum aestivumL. ‘McDermid’) but caused considerable injury without the use of activated carbon over the seeded row. Activated carbon applied in 5-cm bands over the seeded row at 84, 167, and 336 kg/ha protected winter wheat at Pendleton on a silt loam soil. On a sandy loam soil, only a 336 kg/ha rate provided protection from metribuzin. Metribuzin toxicity to winter wheat was more difficult to neutralize when applied preemergence. Downy brome control was not reduced by carbon applied over the wheat row. The best treatment in this study was carbon at 336 kg/ha applied preemergence over the row followed by metribuzin at 0.6 or 1.1 kg/ha postemergence. A 10-week delay between preemergence carbon banding and postemergence metribuzin protected winter wheat from chemical injury.


2020 ◽  
Vol 10 (9) ◽  
pp. 3075
Author(s):  
Muhammad Aseer Khan ◽  
Muhammad Abid ◽  
Nisar Ahmed ◽  
Abdul Wadood ◽  
Herie Park

Effective control of ride quality and handling performance are challenges for active vehicle suspension systems, particularly for off-road applications. The nonlinearities tend to degrade the performance of active suspension systems; these introduce harshness to the ride quality and reduce off-road mobility. Typical control strategies rely on linear models of the suspension dynamics. While these models are convenient, nominally accurate, and controllable due to the abundance of linear control techniques, they neglect the nonlinearities present in real suspension systems. The techniques already implemented and methods used to cope with problem of Half-Car model were studied. Every method and technique had some drawbacks in terms of complexity, cost-effectiveness, and ease of real time implementation. In this paper, an improved control method for Half-Car model was proposed. First, input/output feedback linearization was performed to convert the nonlinear system of Half-Car model into an equivalent linear system. This was followed by a Linear Quadratic Regulator (LQR) controller. This controller had minimized the effects of road disturbances by designing a gain matrix with optimal robustness properties. The proposed control technique was applied in the presence of the deterministic road disturbance. The results were verified using the Matlab/Simulink toolbox.


Weed Science ◽  
1978 ◽  
Vol 26 (2) ◽  
pp. 151-153 ◽  
Author(s):  
D. G. Swan

Six herbicides, simazine [2-chloro-4,6-bis(ethylamino)-s-triazine], propham (isopropyl carbanilate), terbacil (3-tert-butyl-5-chloro-6-methyluracil), carbetamide [D-N-ethyllactamide carbanilate (ester)], pronamide [3,5-dichloro(N-1,1-dimethyl-2-propynyl)benzamide], and secbumeton [N-ethyl-6-methoxy-N′(1-methylpropyl)-1,3,5-triazine-2,4-diamine] were applied annually for four years to establish forage alfalfa(Medicago sativaL. ‘Washoe’). Downy brome(Bromus tectorumL.) control ranged from 80 to 100%. The average control of broadleaf weeds was 90 to 100% with simazine, terbacil, and secbumeton, compared to 30 to 40% with propham, carbetamide, and pronamide. Only simazine and terbacil were phytotoxic to the alfalfa. Based on weed control and crop tolerance, secbumeton performed best on the coarsetextured soil in this experiment.


Weed Science ◽  
1990 ◽  
Vol 38 (3) ◽  
pp. 224-228 ◽  
Author(s):  
Phillip W. Stahlman ◽  
Stephen D. Miller

Densities up to 100 downy brome m2were established in winter wheat in southeastern Wyoming and west-central Kansas to quantify wheat yield loss from downy brome interference and to approximate economic threshold levels. A quadratic equation best described wheat yield loss as a function of weed density when downy brome emerged within 14 days after wheat emergence. Densities of 24, 40, and 65 downy brome m2reduced wheat yield by 10, 15, and 20%, respectively. Wheat yield was not reduced when downy brome emerged 21 or more days later than wheat. Economic thresholds varied with changes in downy brome density, cost of control, wheat price, and potential wheat yield. In a greenhouse experiment, dry weight of 72-day-old wheat plants grown in association with downy brome was not affected by the distance between the weeds and wheat, whereas downy brome plant dry weight increased with increasing distance between the weeds and wheat.


Sign in / Sign up

Export Citation Format

Share Document