scholarly journals Dicamba emissions under field conditions as affected by surface condition

2020 ◽  
pp. 1-8
Author(s):  
Thomas C. Mueller ◽  
Lawrence E. Steckel

Abstract The evolution and widespread distribution of glyphosate-resistant broadleaf weed species catalyzed the introduction of dicamba-resistant crops that allow this herbicide to be applied POST to soybean and cotton. Applications of dicamba that are most cited for off-target movement have occurred in June and July in many states when weeds are often in high densities and at least 10 cm or taller at the time of application. For registration purposes, most field studies examining pesticide emissions are conducted using bare ground or very small plants. Research was conducted in Knoxville, TN, in the summer of 2017, 2018, and 2019 to examine the effect of application surface (tilled soil, dead plants, green plants) on dicamba emissions under field conditions. Dicamba emissions after application were affected by the treated surface in all years, with the order from least to most emissions being dead plants < tilled soil < green plant material. In fact, dicamba emissions were >300% when applied to green plants compared to other surfaces. These findings suggest that dicamba applications made to bare ground will likely underestimate what may occur under normal field use conditions when POST applications are made and the crop canopy or weed groundcover is nearly 100% green material. A potential change to enhance the accuracy of current environmental simulation models would be to increase the theoretical findings to allow for the effect of green plant material on dicamba emissions under field conditions.

Weed Science ◽  
1995 ◽  
Vol 43 (2) ◽  
pp. 247-257 ◽  
Author(s):  
James C. Barbour ◽  
David C. Bridges

A model of competition for light between peanut and three broadleaf weed species has been developed to run with the PNUTGRO model. The model simulates shading of the peanut canopy by reducing the total daily PAR received by the peanuts in a manner that realistically represents timing and quantity of light capture by the weeds. Data were collected in nursery plots of Florida beggarweed, sicklepod, and wild poinsettia in 1989, 1990, and 1991. These data provided the values for the critical parameters: maximum attenuation of PAR by the weed, time when the weed overtops the peanut canopy, time when maximum attenuation is reached, and the distance of influence of the weed. Florida beggarweed overtopped the peanut canopy 52 DAP, and reduced PAR reaching the peanuts 45% by 73 DAP. Sicklepod overtopped the peanut canopy 42 DAP and reached an attenuation of 41% 79 DAP. Wild poinsettia overtopped the peanut canopy 44 DAP, and had an attenuation value of 39% 85 DAP. The distances of influence were 162, 150, and 192 cm for Florida beggarweed, sicklepod, and wild poinsettia, respectively. Observed yield losses in the distance of influence were 26, 27, and 22%, respectively. The model predictions accounted for at least 90% of the yield losses observed in field studies. The model also proved capable of simulating competitive differences between morphologically and phenologically different populations of Florida beggarweed. Simulation models will play an important role in reducing the expenditure of time and resources required to document yield losses due to weeds in peanuts.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1321
Author(s):  
Estefania Gomiero Polli ◽  
Guilherme Sousa Alves ◽  
Joao Victor de Oliveira ◽  
Greg Robert Kruger

Dicamba plus glyphosate tank mixture have been largely adopted for postemergence weed control after the development of dicamba-tolerant crops. Ammonium sulfate is commonly used as water conditioner (WC) to increase glyphosate efficacy, but its use is restricted for dicamba herbicides. The use of non-AMS water conditioner and other adjuvants could be a way to optimize efficacy of this tank mixture while mitigating herbicide off-target movement. The objective of this study was to determine the physical–chemical properties and droplet size distribution of dicamba and glyphosate solutions with and without non-AMS WC alone and tank mixed with other adjuvants and evaluate the response of weed species to these solutions under greenhouse and field conditions. The adjuvants mostly increased density and viscosity and decreased contact angle and surface tension of herbicide solutions. In presence of WC, except for the adjuvants containing drift reducing agent, Dv0.5 decreased with the addition of adjuvants. Under greenhouse conditions, biomass reduction increased up to 47 and 33 percentage points for velvetleaf and c. waterhemp when adjuvants were added to solutions without WC, respectively. No increase in control of horseweed and Palmer amaranth was observed with the use of adjuvants under field conditions.


2020 ◽  
pp. 1-22
Author(s):  
Michael J. Walsh ◽  
Annie E. Rayner ◽  
Annie Rutledge ◽  
John C. Broster

Abstract Chaff lining and chaff tramlining are harvest weed seed control (HWSC) systems that involve the concentration of weed seed containing chaff material into narrow (20 to 30 cm) rows between or on the harvester wheel tracks during harvest. These lines of chaff are left intact in the fields through subsequent cropping seasons in the assumption that the chaff environment is unfavourable for weed seed survival. The chaff row environment effect on weed seed survival was examined in field studies, while chaff response studies determined the influence of increasing amounts of chaff on weed seedling emergence. The objectives of these studies were to determine 1) the influence of chaff lines on the summer-autumn seed survival of selected weed species; and 2) the influence of chaff type and amount on rigid ryegrass seedling emergence. There was frequently no difference (P>0.05) in survival of seed of four weed species (rigid ryegrass, wild oat, annual sowthistle and turnip weed) when these seed were placed beneath or beside chaff lines. There was one instance where wild oat seed survival was increased (P<0.05) when seed were placed beneath compared to beside a chaff line. The pot studies determined that increasing amounts of chaff consistently resulted in decreasing numbers of rigid ryegrass seedlings emerging through chaff material. The suppression of emergence broadly followed a linear relationship where there was approximately a 2.0% reduction in emergence with every 1.0 t ha-1 increase in chaff material. This relationship was consistent across wheat, barley, canola and lupin chaff types, indicating that the physical presence of the chaff was more important than chaff type. These studies indicated that chaff lines may not affect the over summer-autumn survival of the contained weed seeds but the subsequent emergence of weed seedlings will be restricted by high amounts of chaff (>40 t ha-1).


1997 ◽  
Vol 63 (1-4) ◽  
pp. 47-61 ◽  
Author(s):  
Y. Lechón ◽  
A. I. García‐Valcárcel ◽  
T. Matienzo ◽  
C. Sánchez‐Brunete ◽  
J. L. Tadeo

1996 ◽  
Vol 10 (2) ◽  
pp. 253-257 ◽  
Author(s):  
Joan A. Dusky ◽  
William M. Stall

Imazethapyr was evaluated PRE and POST in five lettuce types and chicory under Florida field conditions. The relative sensitivity of leafy crop vigor (most sensitive to most tolerant) to imazethapyr PRE, based on 20% inhibition determined using regression analysis, was as follows: Boston > bibb > crisphead > romaine > leaf > escarole > endive. Leafy crop injury increased as the rate of imazethapyr applied POST increased, with all leafy crops responding in a similar manner. Surfactant addition increased imazethapyr phytotoxicity. Imazethapyr PRE treatments at 0.067 kg ai/ha provided greater than 80% control of livid amaranth, common purslane, flatsedge, and common lambsquarters. Imazethapyr POST at 0.067 kg/ha, with surfactant provided control greater than 85% of all weed species. Greater than 85% spiny amaranth control was provided by imazethapyr POST at 0.017 kg/ha. Use of surfactant with imazethapyr did not improve spiny amaranth control over imazethapyr with no surfactant. POST treatments did not decrease leafy crop yield compared with the hand-weeded check. Imazethapyr applied PRE reduced crop yield compared to the POST treatments and the hand-weeded control.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Alexandra M. Knight ◽  
Wesley J. Everman ◽  
David L. Jordan ◽  
Ronnie W. Heiniger ◽  
T. Jot Smyth

Adequate fertility combined with effective weed management is important in maximizing corn (Zea mays L.) grain yield. Corn uptake of nitrogen (N) is dependent upon many factors including weed species and density and the rate and formulation of applied N fertilizer. Understanding interactions among corn, applied N, and weeds is important in developing management strategies. Field studies were conducted in North Carolina to compare corn and weed responses to urea ammonium nitrate (UAN), sulfur-coated urea (SCU), and composted poultry litter (CPL) when a mixture of Palmer amaranth (Amaranthus palmeri S. Wats.) and large crabgrass (Digitaria sanguinalis L.) was removed with herbicides at heights of 8 or 16 cm. These respective removal timings corresponded with 22 and 28 days after corn planting or V2 and V3 stages of growth, respectively. Differences in N content in above-ground biomass of corn were noted early in the season due to weed interference but did not translate into differences in corn grain yield. Interactions of N source and N rate were noted for corn grain yield but these factors did not interact with timing of weed control. These results underscore that timely implementation of control tactics regardless of N fertility management is important to protect corn grain yield.


Parasitology ◽  
2015 ◽  
Vol 142 (8) ◽  
pp. 1016-1023 ◽  
Author(s):  
JAMES F. SCOTT-BAUMANN ◽  
ERIC R. MORGAN

SUMMARYThe use of aromatic plants and their essential oils for ectoparasite treatment is a field of growing interest. Several species of birds regularly introduce aromatic herbs into their nests putatively to reduce parasites. The behaviour is most often seen in cavity nesting birds and after nest building has finished. The plants are included in a non-structural manner and are often strongly aromatic. Various different hypotheses have been proposed regarding the function of this behaviour; from the plants altering some non-living factor in the nest (crypsis, water loss and insulation hypotheses) to them being involved in mate selection (mate hypothesis) or even having a beneficial effect, direct or indirect, on chicks (drug or nest protection hypothesis, NPH). Many studies have been carried out over the years observing and experimentally testing these hypotheses. This review focuses on studies involving the most popular of these hypotheses, the NPH: that plants decrease nest parasites or pathogens, thereby conveying positive effects to the chicks, allowing the behaviour to evolve. Studies providing observational evidence towards this hypothesis and those experimentally testing it are discussed.


Weed Science ◽  
1993 ◽  
Vol 41 (3) ◽  
pp. 347-352 ◽  
Author(s):  
Glenn R. Wehtje ◽  
John W. Wilcut ◽  
John A. Mcguire

Mixtures of chlorimuron and 2,4-DB were additive with respect to crop injury and were either additive or slightly antagonistic with respect to weed control in greenhouse experiments. Absorption and translocation of14C following application of14C-chlorimuron and14C-2,4-DB were not affected by the presence of the other unlabeled herbicide, except in Florida beggarweed and peanut where 2,4-DB affected distribution of14C-chlorimuron in the treated leaf. In field studies, maximum efficacy was obtained with mixtures of chlorimuron plus 2,4-DB applied 7 or 9 wk after planting. Florida beggarweed control was greatest with chlorimuron or chlorimuron mixtures while the addition of 2,4-DB to chlorimuron improved morningglory and sicklepod control. At 9 and 11 wk after planting, addition of 2,4-DB to chlorimuron controlled Florida beggarweed better than chlorimuron alone. Peanut yields were increased by the addition of 2,4-DB at later applications.


Sign in / Sign up

Export Citation Format

Share Document