Buckhorn plantain (Plantago lanceolata) resistant to 2,4-D in Pennsylvania and alternative control options

2020 ◽  
pp. 1-7
Author(s):  
Travis R. Russell ◽  
Tim T. Lulis ◽  
Brian A. Aynardi ◽  
Kaiyuan T. Tang ◽  
John E. Kaminski

Abstract Buckhorn plantain populations purportedly resistant to 2,4-D were identified in Pennsylvania following long-term, continual applications of the active ingredient to turfgrass. The research objectives of this study were to 1) confirm 2,4-D resistance with dose-response experiments, 2) confirm field resistance of buckhorn plantain to 2,4-D in Pennsylvania, and 3) evaluate alternative herbicides for 2,4-D-resistant buckhorn plantain. Greenhouse dose-response experiments evaluated the sensitivity of buckhorn plantain biotypes that were resistant or susceptible to 2,4-D, and to halauxifen-methyl, two synthetic auxin herbicides from different chemical families. The resistant biotype was ≥11.3 times less sensitive to 2,4-D than the susceptible biotype and required a 2,4-D dosage ≥4.2 times greater than the standard application rate to reach 50% necrosis. No cross-resistance was observed to halauxifen-methyl because both resistant and susceptible populations demonstrated similar herbicide sensitivity. Field experiments confirmed previous reports of ineffectiveness (≤30% reduction) with 2,4-D and other phenoxycarboxylic herbicides in potentially resistant buckhorn plantain biotypes. Treatments containing halauxifen-methyl resulted in a ≥70% reduction in resistant biotypes. This is the first known report of synthetic auxin herbicide resistance in any weed species in Pennsylvania and highlights emerging herbicide resistance challenges in turfgrass systems.

2018 ◽  
Vol 32 (2) ◽  
pp. 182-189 ◽  
Author(s):  
Aaron J. Patton ◽  
Daniel V. Weisenberger ◽  
Geoff P. Schortgen

AbstractA population of buckhorn plantain with suspected resistance to 2,4-D was identified in central Indiana following 30 yr of 2,4-D–containing herbicide applications. Our objectives were to (1) confirm and quantify the level of herbicide resistance in the buckhorn plantain population using dose–response experiments and (2) find alternative herbicides that could be used to control this population. Greenhouse experiments were conducted to quantify the dose–response of resistant (R) and susceptible (S) biotypes of buckhorn plantain to both 2,4-D and triclopyr, two synthetic auxin herbicides from different chemical families. The R biotype was ≥6.2 times less sensitive to 2,4-D than the S biotype. The efficacy of triclopyr was similar on both the R and S biotypes of buckhorn plantain, suggesting the absence of cross-resistance to this herbicide. This is the first report of 2,4-D resistance in buckhorn plantain and the first report of 2,4-D resistance in turf. The resistance mechanism was limited to within a chemical family (phenoxycarboxylic acid) and did not occur across all WSSA Group 4 synthetic auxin herbicides, as the pyridinecarboxylic acid herbicides clopyralid and triclopyr and the arylpicolinate herbicide halauxifen-methyl provided control in our experiments.


Weed Science ◽  
1998 ◽  
Vol 46 (5) ◽  
pp. 604-607 ◽  
Author(s):  
Stephen B. Powles ◽  
Debrah F. Lorraine-Colwill ◽  
James J. Dellow ◽  
Christopher Preston

Following 15 yr of successful use, glyphosate failed to control a population of the widespread grass weed rigid ryegrass in Australia. This population proved to be resistant to glyphosate in pot dose-response experiments conducted outdoors, exhibiting 7- to 11-fold resistance when compared to a susceptible population. Some cross-resistance to diclofop-methyl (about 2.5-fold) was also observed. Similar levels of control of the resistant and susceptible populations were obtained following application of amitrole, chlorsulfuron, fluazifop-P-butyl, paraquat, sethoxydim, sirnazine, or tralkoxydim. The presence of glyphosate resistance in a major weed species indicates a need for changes in glyphosate use patterns.


Weed Science ◽  
2019 ◽  
Vol 67 (6) ◽  
pp. 605-612 ◽  
Author(s):  
Xiangying Liu ◽  
Shihai Xiang ◽  
Tao Zong ◽  
Guolan Ma ◽  
Lamei Wu ◽  
...  

AbstractThe widespread, rapid evolution of herbicide-resistant weeds is a serious and escalating agronomic problem worldwide. During China’s economic boom, the country became one of the most important herbicide producers and consumers in the world, and herbicide resistance has dramatically increased in the past decade and has become a serious threat to agriculture. Here, following an evidence-based PRISMA (preferred reporting items for systematic reviews and meta-analyses) approach, we carried out a systematic review to quantitatively assess herbicide resistance in China. Multiple weed species, including 26, 18, 11, 9, 5, 5, 4, and 3 species in rice (Oryza sativa L.), wheat (Triticum aestivum L.), soybean [Glycine max (L.) Merr.], corn (Zea mays L.), canola (Brassica napus L.), cotton (Gossypium hirsutum L.)., orchards, and peanut (Arachis hypogaea L.) fields, respectively, have developed herbicide resistance. Acetolactate synthase inhibitors, acetyl-CoA carboxylase inhibitors, and synthetic auxin herbicides are the most resistance-prone herbicides and are the most frequently used mechanisms of action, followed by 5-enolpyruvylshikimate-3-phosphate synthase inhibitors and protoporphyrinogen oxidase inhibitors. The lack of alternative herbicides to manage weeds that exhibit cross-resistance or multiple resistance (or both) is an emerging issue and poses one of the greatest threats challenging the crop production and food safety both in China and globally.


2022 ◽  
Author(s):  
Jamal R. Qasem

Two field experiments were conducted to evaluate the effectiveness of 12 herbicides in controlling hairy fleabane [ Conyza bonariensis (L.) Cronquist] in a date palm orchard located in the central Jordan valley during the spring of 2017. Results showed that C. bonariensis resists paraquat (2.5, 5 and 7.5kgha -1 ), oxadiazon (5kgha -1 ) and oxyflourfen (3.3kgha -1 ) herbicides applied at normal or higher than the recommended rates. None of the three herbicides was significantly effective against the weed and treated plants continued growing normally similar to those of untreated control. Higher rates (10-fold of the recommended rates) of the same herbicides failed to control the weed. The effect of other tested herbicides on the weed was varied with bromoxynil plus MCPA (buctril ® M), 2,4-D- iso-octyl ester, glyphosate, glyphosate trimesium and triclopyr were most effective and completely controlled the weed at recommended rates of application. Testing paraquat, oxadiazon and oxyflourfen using the normal recommended and 10-fold higher rates on two populations of C. bonariensis grown from seeds of the date palm and al-Twal (another site in the Jordan Valley) weed populations and grown in pots under glasshouse conditions showed that Date palm population was resistant to the three herbicides at both application rates while al-Twal site population was highly susceptible and completely controlled at normal and high rates of the three herbicides. It is concluded that certain populations of C . bonariensis developed resistance to paraquat, oxadiazon and oxyflourfen but control of this weed was possible using other herbicides of different mechanism of action. Herbicide rotation or other nonchemical weed control methods have been suggested to prevent or reduce the buildup and spread of resistant populations of this weed species. These results represent the first report on herbicide resistance of C. bonariensis in Jordan.


2017 ◽  
Vol 54 (No. 1) ◽  
pp. 48-59
Author(s):  
Zakaria Norazua ◽  
Ahmad-Hamdani Muhammad Saiful ◽  
Juraimi Abdul Shukor

Limnocharis flava (L.) Buchenau is among the most problematic rice weeds in Malaysia and is also reported to have developed multiple resistance to AHAS inhibitor bensulfuron-methyl and synthetic auxin 2,4-D. In this study, resistance across different AHAS inhibitors was characterised in a L. flava population infesting rice fields in Pulau Pinang, Malaysia. Dose-response experiments were conducted to determine the level of resistance to sulfonylureas, imidazolinone, triazolopyrimidine, and pyrimidinyl-thiobenzoate. Cross-resistance across different AHAS inhibitors was observed in the resistant L. flava population, exhibiting a high level of resistance to bensulfuron-methyl, while exhibiting a moderate level of resistance to metsulfuron-methyl and a low level of resistance to pyrazosulfuron-ethyl and pyribenzoxim. However, all resistant L. flava individuals were still sensitive to imazethapyr, penoxsulam, and bispyribac-sodium. Based on the results, it is likely that resistance to AHAS inhibitors in L. flava is conferred by target-site resistance mechanisms.


2021 ◽  
pp. 1-28
Author(s):  
Charles M. Geddes ◽  
Mallory L. Owen ◽  
Teandra E. Ostendorf ◽  
Julia Y. Leeson ◽  
Shaun M. Sharpe ◽  
...  

Abstract Herbicide-resistant (HR) kochia is a growing problem in the Great Plains region of Canada and the United States (U.S.). Resistance to up to four herbicide sites of action, including photosystem II inhibitors, acetolactate synthase inhibitors, synthetic auxins, and the 5-enolpyruvylshikimate-3-phosphate synthase inhibitor glyphosate have been reported in many areas of this region. Despite being present in the U.S. since 1993/1994, auxinic-HR kochia is a recent and growing phenomenon in Canada. This study was designed to characterize (a) the level of resistance and (b) patterns of cross-resistance to dicamba and fluroxypyr in 12 putative auxinic-HR kochia populations from western Canada. The incidence of dicamba-resistant individuals ranged among populations from 0% to 85%, while fluroxypyr-resistant individuals ranged from 0% to 45%. In whole-plant dose-response bioassays, the populations exhibited up to 6.5-fold resistance to dicamba and up to 51.5-fold resistance to fluroxypyr based on visible injury 28 days after application. Based on plant survival estimates, the populations exhibited up to 3.7-fold resistance to dicamba and up to 72.5-fold resistance to fluroxypyr. Multiple patterns of synthetic auxin resistance were observed, where one population from Cypress County, Alberta was resistant to dicamba but not fluroxypyr, while another from Rocky View County, Alberta was resistant to fluroxypyr but not dicamba based on single-dose population screening and dose-response bioassays. These results suggest that multiple mechanisms may confer resistance to dicamba and/or fluroxypyr in Canadian kochia populations. Further research is warranted to determine these mechanisms. Farmers are urged to adopt proactive non-chemical weed management tools in an effort to preserve efficacy of the remaining herbicide options available for control of HR kochia.


2017 ◽  
Vol 31 (6) ◽  
pp. 811-821 ◽  
Author(s):  
Mike G. Schryver ◽  
Nader Soltani ◽  
David C. Hooker ◽  
Darren E. Robinson ◽  
Patrick J. Tranel ◽  
...  

Glyphosate-resistant (GR) common waterhemp is the fifth GR weed species confirmed in Canada, and the fourth in Ontario. As of 2017, GR common waterhemp has been confirmed in Lambton, Essex, and Chatham-Kent counties in Ontario. Greenhouse and field dose–response experiments revealed that GR common waterhemp in Ontario had a resistance level of 4.5 and 28, respectively, when compared with known glyphosate-susceptible populations. At 12 wk after application, pyroxasulfone/flumioxazin (240 g ai ha−1), pyroxasulfone/sulfentrazone (300 g ai ha−1), andS-metolachlor/metribuzin (1,943 g ai ha−1) controlled GR common waterhemp 97%, 92%, and 87%, respectively. Pyroxasulfone/sulfentrazone orS-metolachlor/metribuzin applied PRE followed by acifluorfen (600 g ai ha−1) or fomesafen (240 g ai ha−1) applied POST controlled GR common waterhemp 98% and performed better than PRE or POST alone. This research is the first to determine the resistance factor of GR common waterhemp in Ontario and identifies control strategies in soybean to mitigate the impact of common waterhemp interference in soybean crop production.


2015 ◽  
Vol 29 (1) ◽  
pp. 147-153 ◽  
Author(s):  
Patrick E. McCullough ◽  
Christopher R. Johnston ◽  
Thomas V. Reed ◽  
Jialin Yu

Buckhorn plantain is a perennial weed in turfgrass and efficacy of POST herbicides is often inconsistent for control in spring. Indaziflam is a cellulose biosynthesis inhibitor used for PRE control of annual weeds in turf and applications have shown to be injurious to established buckhorn plantain. The objectives of this research were to evaluate (1) effects of indaziflam application rate and placement on buckhorn plantain injury; (2) effects of tank-mixing indaziflam with POST herbicides for buckhorn plantain control; and (3) physiological effects of indaziflam on absorption and translocation of14C-2,4-D in buckhorn plantain. In greenhouse experiments, indaziflam reduced buckhorn plantain shoot mass 61 to 75% from the nontreated at 4 wk after treatment (WAT) and hierarchical rank of application placements were: foliar + soil ≥ soil ≥ foliar. Differences in biomass reduction from application rates (27.5 and 55 g ai ha−1) were not detected. In field experiments, indaziflam at 55 g ha−1controlled buckhorn plantain 34% at 9 WAT but enhanced the speed of control from all herbicides tested in tank mixtures. Exclusive applications of 2,4-D or 2,4-D + dicamba + MCPP provided poor control (< 70%) of buckhorn plantain at 9 WAT, but tank mixtures with indaziflam provided 81 and 98% control, respectively. Fluroxypyr and simazine alone controlled buckhorn plantain < 38% but tank mixtures with indaziflam enhanced control more than twice as much from exclusive applications. Tank-mixing indaziflam with metsulfuron did not improve control from metsulfuron alone after 9 wk. Bermudagrass injury was not detected from any treatment. In laboratory experiments,14C-2,4-D absorption and translocation in buckhorn plantain was similar with or without indaziflam tank mixtures at 72 and 168 h after treatment. Overall, indaziflam may improve buckhorn plantain control from POST herbicides by providing additive phytotoxicity in tank mixtures in spring.


2009 ◽  
Vol 23 (3) ◽  
pp. 340-345 ◽  
Author(s):  
Stevan Z. Knezevic ◽  
Avishek Datta ◽  
Jon Scott ◽  
Leo D. Charvat

Saflufenacil is a new herbicide being developed for preplant burndown and PRE broadleaf weed control in field crops, including corn, soybean, sorghum, and wheat. Field experiments were conducted in 2006 and 2007 at Concord, in northeast Nebraska, with the objective to describe dose–response curves of saflufenacil applied with several adjuvants for broadleaf weed control. Dose–response curves based on log-logistic model were used to determine the effective dose that provides 90% weed control (ED90) values for six broadleaf weeds (field bindweed, prickly lettuce, henbit, shepherd's-purse, dandelion, and field pennycress). Addition of adjuvants greatly improved efficacy of saflufenacil. For example, the ED90values for field bindweed control at 28 d after treatment were 71, 20, 11, and 7 g/ha for saflufenacil applied alone, or with nonionic surfactant (NIS), crop oil concentrate (COC), or methylated seed oil (MSO), respectively. MSO was the adjuvant that provided the greatest enhancement of saflufenacil across all species tested. COC was the second-best adjuvant and provided control similar to MSO on many weed species. NIS provided the least enhancement of saflufenacil. These results are very similar to the proposed label dose of saflufenacil for burndown weed control, which will range from 25 to 100 g/ha with MSO or COC. We believe that such a dose would provide excellent burndown control of most broadleaf weed species that emerge in the fall in Nebraska.


Weed Science ◽  
1992 ◽  
Vol 40 (2) ◽  
pp. 227-232 ◽  
Author(s):  
Tracy E. Klingaman ◽  
Charles A. King ◽  
Lawrence R. Oliver

Field experiments were conducted in 1986, 1987, and 1988 to evaluate imazethapyr rate and time of application on postemergence control of 24 weed species. Contour graphs were developed that predicted imazethapyr rates required for various levels of weed control based upon weed leaf number at application. Rates below the labeled rate (70 g ha−1) provided 90% or greater control of common cocklebur, smallflower morningglory, and smooth pigweed if applied to 3 true-leaf or smaller weeds and of barnyardgrass, seedling johnsongrass, and Palmer amaranth if applied while weeds were in the cotyledon or 1 true-leaf stage. A rate of 70 g ha−1provided 90% control of large crabgrass in the 1 true-leaf stage. Entireleaf morningglory, red rice, pitted morningglory, and velvetleaf are not susceptible enough to imazethapyr for 90% or greater control to be obtained with rates lower than 70 g ha−1at the 1 true-leaf growth stage. These data demonstrate how control data can be used for developing effective reduced-rate herbicide recommendations based on weed leaf number.


Sign in / Sign up

Export Citation Format

Share Document