Multiple herbicide-resistant Palmer amaranth (Amaranthus palmeri) in Connecticut: confirmation and response to POST herbicides

2021 ◽  
pp. 1-7
Author(s):  
Jatinder S. Aulakh ◽  
Parminder S. Chahal ◽  
Vipan Kumar ◽  
Andrew J. Price ◽  
Karl Guillard

Abstract Palmer amaranth is the latest pigweed species documented in Connecticut; it was identified there in 2019. In a single-dose experiment, the Connecticut Palmer amaranth biotype survived the field-use rates of glyphosate (840 g ae ha−1) and imazaquin (137 g ai ha−1) herbicides applied separately. Additional experiments were conducted to (1) determine the level of resistance to glyphosate and acetolactate synthase (ALS) inhibitors in the Connecticut-resistant (CT-Res) biotype using whole-plant dose-response bioassays, and (2) evaluate the response of the CT-Res biotype to POST herbicides commonly used in Connecticut cropping systems. Based on the effective dose required for 90% control (ED90), the CT-Res biotype was 10-fold resistant to glyphosate when compared with the Kansas-susceptible (KS-Sus) biotype. Furthermore, the CT-Res biotype was highly resistant to ALS-inhibitor herbicides; only 18% control was achieved with 2,196 g ai ha−1 imazaquin. The CT-Res biotype was also cross-resistant to other ALS-inhibitor herbicides, including chlorimuron-ethyl (13.1 g ai ha−1), halosulfuron-methyl (70 g ai ha−1), and sulfometuron-methyl (392 g ai ha−1). The CT-Res Palmer amaranth was controlled 75% to 100% at 21 d after treatment (DAT) with POST applications of 2,4-D (386 g ae ha−1), carfentrazone-ethyl (34 g ai ha−1), clopyralid (280 g ae ha−1), dicamba (280 g ae ha−1), glufosinate (595 g ai ha−1), lactofen (220 g ai ha−1), oxyfluorfen (1,121g ai ha−1), and mesotrione (105 g ai ha−1) herbicides. Atrazine (2,240 g ai ha−1) controlled the CT-Res biotype only 52%, suggesting the biotype is resistant to this herbicide as well. Here we report the first case of Palmer amaranth from Connecticut with multiple resistance to glyphosate and ALS inhibitors. Growers should proactively use all available weed control tactics, including the use of effective PRE and alternative POST herbicides (tested in this study), for effective control of the CT-Res biotype.

2021 ◽  
pp. 1-23
Author(s):  
Jasmine Mausbach ◽  
Suat Irmak ◽  
Debalin Sarangi ◽  
John Lindquist ◽  
Amit J. Jhala

Abstract Palmer amaranth is the most problematic and troublesome weed in agronomic cropping systems in the United States. Acetolactate synthase (ALS) inhibitor- and glyphosate-resistant (GR) Palmer amaranth has been confirmed in Nebraska and it is widespread in several counties. Soybean resistant to isoxaflutole/glufosinate/glyphosate has been developed that provides additional herbicide site of action for control of herbicide-resistant weeds. The objectives of this study were to evaluate herbicide programs for control of ALS inhibitor/GR Palmer amaranth and their effect on Palmer amaranth density and biomass, as well as soybean injury and yield in isoxaflutole/glufosinate/glyphosate-resistant soybean. Field experiments were conducted in a grower’s field infested with ALS inhibitor- and GR Palmer amaranth near Carleton, Nebraska, in 2018 and 2019. Isoxaflutole applied alone or mixed with sulfentrazone/pyroxasulfone, flumioxazin/pyroxasulfone, or imazethapyr/saflufenacil/pyroxasulfone provided similar control (86%-99%) of Palmer amaranth 21 d after PRE (DAPRE). At 14 d after early-POST (DAEPOST), isoxaflutole applied PRE and PRE followed by (fb) POST controlled Palmer amaranth 10% to 63% compared to 75% to 96% control with glufosinate applied EPOST in both years. A PRE herbicide fb glufosinate controlled Palmer amaranth 80% to 99% 21 d after late-POST (DALPOST) in 2018 and reduced density 89% to 100% in 2018 and 58% to 100% in 2019 at 14 DAEPOST. No soybean injury was observed from any of the herbicide programs tested in this study. Soybean yield in 2019 was relatively higher due to higher precipitation compared with 2018 with generally no differences between herbicide programs. This research indicates that herbicide programs are available for effective control of ALS inhibitor/GR Palmer amaranth in isoxaflutole/glufosinate/glyphosate-resistant soybean.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258685
Author(s):  
Christopher E. Buddenhagen ◽  
Trevor K. James ◽  
Zachary Ngow ◽  
Deborah L. Hackell ◽  
M. Phil Rolston ◽  
...  

To estimate the prevalence of herbicide-resistant weeds, 87 wheat and barley farms were randomly surveyed in the Canterbury region of New Zealand. Over 600 weed seed samples from up to 10 mother plants per taxon depending on abundance, were collected immediately prior to harvest (two fields per farm). Some samples provided by agronomists were tested on an ad-hoc basis. Over 40,000 seedlings were grown to the 2–4 leaf stage in glasshouse conditions and sprayed with high priority herbicides for grasses from the three modes-of-action acetyl-CoA carboxylase (ACCase)-inhibitors haloxyfop, fenoxaprop, clodinafop, pinoxaden, clethodim, acetolactate synthase (ALS)-inhibitors iodosulfuron, pyroxsulam, nicosulfuron, and the 5-enolpyruvyl shikimate 3-phosphate synthase (EPSPS)-inhibitor glyphosate. The highest manufacturer recommended label rates were applied for the products registered for use in New Zealand, often higher than the discriminatory rates used in studies elsewhere. Published studies of resistance were rare in New Zealand but we found weeds survived herbicide applications on 42 of the 87 (48%) randomly surveyed farms, while susceptible reference populations died. Resistance was found for ALS-inhibitors on 35 farms (40%) and to ACCase-inhibitors on 20 (23%) farms. The number of farms with resistant weeds (denominator is 87 farms) are reported for ACCase-inhibitors, ALS-inhibitors, and glyphosate respectively as: Avena fatua (9%, 1%, 0% of farms), Bromus catharticus (0%, 2%, 0%), Lolium spp. (17%, 28%, 0%), Phalaris minor (1%, 6%, 0%), and Vulpia bromoides (0%, not tested, 0%). Not all farms had the weeds present, five had no obvious weeds prior to harvest. This survey revealed New Zealand’s first documented cases of resistance in P. minor (fenoxaprop, clodinafop, iodosulfuron) and B. catharticus (pyroxsulam). Twelve of the 87 randomly sampled farms (14%) had ALS-inhibitor chlorsulfuron-resistant sow thistles, mostly Sonchus asper but also S. oleraceus. Resistance was confirmed in industry-supplied samples of the grasses Digitaria sanguinalis (nicosulfuron, two maize farms), P. minor (iodosulfuron, one farm), and Lolium spp. (cases included glyphosate, haloxyfop, pinoxaden, iodosulfuron, and pyroxsulam, 9 farms). Industry also supplied Stellaria media samples that were resistant to chlorsulfuron and flumetsulam (ALS-inhibitors) sourced from clover and ryegrass fields from the North and South Island.


Weed Science ◽  
2015 ◽  
Vol 63 (2) ◽  
pp. 399-407 ◽  
Author(s):  
Jiaqi Guo ◽  
Chance W. Riggins ◽  
Nicholas E. Hausman ◽  
Aaron G. Hager ◽  
Dean E. Riechers ◽  
...  

A waterhemp population (MCR) previously characterized as resistant to 4-hydroxyphenylpyruvate dioxygenase and photosystem II inhibitors demonstrated both moderate and high levels of resistance to acetolactate synthase (ALS) inhibitors. Plants from the MCR population exhibiting high resistance to ALS inhibitors contained the commonly found Trp574Leu ALS amino acid substitution, whereas plants with only moderate resistance did not have this substitution. A subpopulation (JG11) was derived from the MCR population in which the moderate-resistance trait was isolated from the Trp574Leu mutation. Results from DNA sequencing and ALS enzyme assays demonstrated that resistance to ALS inhibitors in the JG11 population was not due to an altered site of action. This nontarget-site ALS-inhibitor resistance was characterized with whole-plant dose–response experiments using herbicides from each of the five commercialized families of ALS-inhibiting herbicides. Resistance ratios ranging from 3 to 90 were obtained from the seven herbicides evaluated. Nontarget-site resistance to ALS has been rarely documented in eudicot weeds, and adds to the growing list of resistance traits evolved in waterhemp.


2020 ◽  
pp. 4-9
Author(s):  
V. Schwartau ◽  
L. Mykhalska

Goal. Investigate the possibility to use 1,8-naphthalic anhydride metabolism inductor to control acetolactate synthase (ALS) inhibitor-resistant biotype of common graminicides of aryloxyphenoxypropionic acid class in rice. Methodology. The interaction of 1,8-naphthalic anhydride and fenoxaprop-p-ethyl on variety Vikont rice plants was studied under laboratory aseptic conditions. The data were statistically processed. Results. In Ukraine we have identified the biotype of resistant to herbicide ALS inhibitors Echinochloa crus-galli, which is cross-resistant to widely used herbicides — ALS inhibitors of the following chemical classes: imidazolinones (imazamox, imazapyr), sulfonylurea (nicosulfuron), triazolopyrimidines (penoxsulam). The possibilities of chemical control of weeds in rice, corn, sunflower, etc. crops are significantly limited. Multi-resistance of this weed biotype to herbicides — inhibitors of photosynthesis, mitotic cycle, 5-enolpyruvylshikimate-3-phosphate synthase, acetyl-CoA-carboxylase, protein synthesis — has not been detected. Therefore, the use of graminicides of aryloxyphenoxypropionate class is promising for the control of this ALS-resistant biotype of Echinochloa crus-galli. To increase the selectivity of fenoxaprop-P-ethyl application to rice plants, we propose to treat the seeds of the crop with the inductor of xenobiotics metabolism in plants — 1.8-naphthalic anhydride before sowing. When using 1.8-naphthalic anhydride in concentrations of 10-5 M, phytotoxicity of fenoxaprop-P-ethyl in concentrations of 10-6 and 10-5 M to rice plants is effectively reduced. Conclusions. The use of 1.8-naphthalic anhydride is promising for increasing the selectivity of fenoxaprop-P-ethyl for rice plants and allows the development of technologies using graminicides of aryloxyphenoxypropionate class to control ALS-resistant biotype of Echinochloa crus-galli in crops. Also, it is necessary to pay attention to the problem of ALS-resistant weed biotype proliferation control in agrophytocenoses in regions of Ukraine.


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1496
Author(s):  
Balaji Aravindhan Pandian ◽  
Abigail Friesen ◽  
Martin Laforest ◽  
Dallas E. Peterson ◽  
P. V. Vara Prasad ◽  
...  

Wild buckwheat (Polygonum convolvulus L.) is a problem weed and ALS-inhibitors (e.g., chlorsulfuron) are commonly used for its management. Recently, a population of wild buckwheat (KSW-R) uncontrolled with ALS-inhibitors was found in a wheat field in Kansas, USA. The objectives of this research were to determine the level and mechanism of resistance to chlorsulfuron and cross resistance to other ALS-inhibitors in the KSW-R population. In response to chlorsulfuron rates ranging from 0 to 16x (x = 18 g ai/ha), the KSW-R wild buckwheat was found >100-fold more resistant compared to a known ALS-inhibitor susceptible (KSW-S) wild buckwheat. Also, >90% of KSW-R plants survived field recommended rates of sulfonylurea but not imidazolinone family of ALS-inhibitors. A portion of the ALS gene covering all previously reported mutations known to bestow resistance to ALS-inhibitors was sequenced from both KSW-R and KSW-S plants. The Pro-197-Ser substitution that confers resistance to the sulfonylurea herbicides was found in KSW-R plants. Our results support the evolution of high level of chlorsulfuron resistance as a result of a mutation in the ALS-gene in KSW-R buckwheat. This is the first case of resistance to any herbicides in wild buckwheat in the US.


Weed Science ◽  
2009 ◽  
Vol 57 (5) ◽  
pp. 474-481 ◽  
Author(s):  
Fabiane P. Lamego ◽  
Dirk Charlson ◽  
Carla A. Delatorre ◽  
Nilda R. Burgos ◽  
Ribas A. Vidal

Soybean is a major crop cultivated in Brazil, and acetolactate synthase (ALS)-inhibiting herbicides are widely used to control weeds in this crop. The continuous use of these ALS-inhibiting herbicides has led to the evolution of herbicide-resistant weeds worldwide. Greater beggarticks is a polyploid species and one of the most troublesome weeds in soybean production since the discovery of ALS-resistant biotypes in 1996. To confirm and characterize the resistance of greater beggarticks to ALS inhibitors, whole-plant bioassays and enzyme experiments were conducted. To investigate the molecular basis of resistance in greater beggarticks theALSgene was sequenced and compared between susceptible and resistant biotypes. Our results confirmed that greater beggarticks is resistant to ALS inhibitors and also indicated it possesses at least three isoforms of theALSgene. Analysis of the nucleotide and deduced amino acid sequences among the isoforms and between the biotypes indicated that a single point mutation, G–T, in oneALSisoform from the resistant biotype resulted in an amino acid substitution, Trp574Leu. Two additional substitutions were observed, Phe116Leu and Phe149Ser, in a second isoform of the resistant biotype, which were not yet reported in any other herbicide-resistantALSgene; thus, their role in conferring herbicide resistance is not yet ascertained. This is the first report ofALSmutations in an important, herbicide-resistant weed species from Brazil.


Weed Science ◽  
2016 ◽  
Vol 64 (2) ◽  
pp. 240-247 ◽  
Author(s):  
William T. Molin ◽  
Vijay K. Nandula ◽  
Alice A. Wright ◽  
Jason A. Bond

Transfer of herbicide resistance among closely related weed species is a topic of growing concern. A spiny amaranth × Palmer amaranth hybrid was confirmed resistant to several acetolactate synthase (ALS) inhibitors including imazethapyr, nicosulfuron, pyrithiobac, and trifloxysulfuron. Enzyme assays indicated that the ALS enzyme was insensitive to pyrithiobac and sequencing revealed the presence of a known resistance conferring point mutation, Trp574Leu. Alignment of the ALS gene for Palmer amaranth, spiny amaranth, and putative hybrids revealed the presence of Palmer amaranth ALS sequence in the hybrids rather than spiny amaranth ALS sequences. In addition, sequence upstream of the ALS in the hybrids matched Palmer amaranth and not spiny amaranth. The potential for transfer of ALS inhibitor resistance by hybridization has been demonstrated in the greenhouse and in field experiments. This is the first report of gene transfer for ALS inhibitor resistance documented to occur in the field without artificial/human intervention. These results highlight the need to control related species in both field and surrounding noncrop areas to avoid interspecific transfer of resistance genes.


Weed Science ◽  
2017 ◽  
Vol 65 (5) ◽  
pp. 547-556 ◽  
Author(s):  
Dan Li ◽  
Xiangju Li ◽  
Huilin Yu ◽  
Jingjing Wang ◽  
Hailan Cui

Eclipta, widespread in tropical, subtropical, and temperate regions, is one of the main malignant broadleaf weeds and thrives in moist and dryland fields. Field rates of acetolactate synthase (ALS) inhibitors have failed to control eclipta in some farmlands in China. One ALS inhibitor–resistant population (R) collected from Jiangsu province in China was confirmed in the greenhouse in our preliminary work. Whole-plant assays revealed that this R population was highly resistant to four sulfonylureas (pyrazosulfuron-ethyl, 134-fold; bensulfuron-methyl, 172-fold; metsulfuron-methyl, 30-fold; and tribenuron-methyl, 195-fold), two triazolopyrimidines (pyroxsulam, 98-fold; penoxsulam, 30-fold), and one pyrimidinylthio-benzoate (bispyribac-sodium, 166-fold) and was moderately resistant to two imidazolinones (imazethapyr, 10-fold; imazapic, 19-fold). ALS enzyme-activity assays showed insensitivity of the ALS from the R population (resistance index values ranged from 12 to 293) to all of the above ALS inhibitors in vitro. Chromatograms fromALSgene sequence analysis detected a homozygous Pro-197-Ser amino acid substitution in the R population. These results confirmed that the Pro-197-Ser substitution results in broad-spectrum cross-resistance to ALS inhibitors in the eclipta R population. To our knowledge, this study is the first to report broad cross-resistance to ALS inhibitors in eclipta and to obtain the full-lengthALSgene sequence.


2019 ◽  
Vol 33 (2) ◽  
pp. 349-354 ◽  
Author(s):  
Vijay K. Varanasi ◽  
Chad Brabham ◽  
Nicholas E. Korres ◽  
Jason K. Norsworthy

AbstractPalmer amaranth is one of the most problematic weeds in cropping systems of North America, especially in midsouthern United States, because of its competitive ability and propensity to evolve resistance to several herbicide sites of action. Previously, we confirmed and characterized the first case of nontarget site resistance (NTSR) to fomesafen in a Palmer amaranth accession from Randolph County, AR (RCA). The primary basis of the present study was to evaluate the cross- and multiple-resistance profile of the RCA accession. The fomesafen dose-response assay in the presence of malathion revealed a lower level of RCA resistance when compared with fomesafen alone. The resistance index of the RCA accession, based on 50% biomass reduction, ranged from 63-fold (fomesafen alone) to 22-fold (malathion plus fomesafen), when compared with a 2007 susceptible, and 476-fold and 167-fold, respectively, relative to a 1986 susceptible check. The RCA accession was resistant to other protoporphyrinogen oxidase (PPO) inhibitors (i.e., flumioxazin, acifluorfen, saflufenacil) as well as the 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor tembotrione and acetolactate synthase (ALS) inhibitor pyrithiobac sodium. Sequencing of theALSgene revealed no point mutations, indicating that a target-site mechanism is not involved in conferring ALS-inhibitor resistance in the RCA accession. Of the three PPO-inhibiting herbicides tested in combination with the malathion, saflufenacil resulted in the greatest biomass reduction (80%;P< 0.05) and lowest survival rate (23%;P< 0.05) relative to nontreated plants. The application of cytochrome P450 or glutathioneS-transferase inhibitors with fomesafen did not lead to any adverse effects on soybean, suggesting a possible role for these compounds for management of NTSR under field conditions. These results shed light on the relative unpredictability of NTSR in conferring herbicide cross- and multiple resistance in Palmer amaranth.


2019 ◽  
Vol 33 (04) ◽  
pp. 610-615 ◽  
Author(s):  
Michael M Houston ◽  
Jason K Norsworthy ◽  
Tom Barber ◽  
Chad Brabham

AbstractPalmer amaranth accessions resistant to protoporphyrinogen oxidase (PPO), 5-enolpyruvyl-shikimate-3-phosphate synthase, and acetolactate synthase (ALS)-inhibitor herbicides are widespread in the Midsouth, making control difficult. Field experiments were conducted in Marion and Crawfordsville, AR, in 2016 and 2017 to assess PRE and POST herbicides labeled for use in corn, cotton, or soybean for control of multiresistant Palmer amaranth. Accessions at both locations were resistant to glyphosate and ALS inhibitors and segregating for both the R128 and ΔG210 PPO resistance mechanisms. Of the 15 herbicide treatments tested, only atrazine (1,120 g ai ha−1), pyroxasulfone (149 g ha−1), and flumioxazin (144 g ha−1) provided 85% or greater Palmer amaranth control 14 days after treatment (DAT). Visible control ratings at 35 DAT declined sharply, with no treatment providing more than 84% control, suggesting POST applications should be made no later than 28 DAT. Glufosinate (594 and 818 g ha−1), dicamba (560 g ae ha−1), 2,4-D plus glyphosate (784 g ae ha−1plus 834 g ae ha−1), and paraquat (700 g ha−1) applied POST to 7- to 10-cm plants reduced Palmer amaranth density 83% or more 14 DAT. Both glyphosate (1,266 g ha−1) and pyrithiobac sodium (73 g ha−1) provided less than 7% Palmer amaranth control. Although flumioxazin alone at a labeled rate controlled Palmer amaranth 82% in the PRE experiment, PPO inhibitors by themselves applied POST provided no more than 37% control at 14 DAT. Effective foliar herbicides applied POST, including residual herbicides, should be made when Palmer amaranth are less than 10-cm tall for optimal control of these multiresistant Palmer amaranth accessions.


Sign in / Sign up

Export Citation Format

Share Document