scholarly journals Field evaluation of preemergence and postemergence herbicides for control of protoporphyrinogen oxidase-resistant Palmer amaranth (Amaranthus palmeri S. Watson)

2019 ◽  
Vol 33 (04) ◽  
pp. 610-615 ◽  
Author(s):  
Michael M Houston ◽  
Jason K Norsworthy ◽  
Tom Barber ◽  
Chad Brabham

AbstractPalmer amaranth accessions resistant to protoporphyrinogen oxidase (PPO), 5-enolpyruvyl-shikimate-3-phosphate synthase, and acetolactate synthase (ALS)-inhibitor herbicides are widespread in the Midsouth, making control difficult. Field experiments were conducted in Marion and Crawfordsville, AR, in 2016 and 2017 to assess PRE and POST herbicides labeled for use in corn, cotton, or soybean for control of multiresistant Palmer amaranth. Accessions at both locations were resistant to glyphosate and ALS inhibitors and segregating for both the R128 and ΔG210 PPO resistance mechanisms. Of the 15 herbicide treatments tested, only atrazine (1,120 g ai ha−1), pyroxasulfone (149 g ha−1), and flumioxazin (144 g ha−1) provided 85% or greater Palmer amaranth control 14 days after treatment (DAT). Visible control ratings at 35 DAT declined sharply, with no treatment providing more than 84% control, suggesting POST applications should be made no later than 28 DAT. Glufosinate (594 and 818 g ha−1), dicamba (560 g ae ha−1), 2,4-D plus glyphosate (784 g ae ha−1plus 834 g ae ha−1), and paraquat (700 g ha−1) applied POST to 7- to 10-cm plants reduced Palmer amaranth density 83% or more 14 DAT. Both glyphosate (1,266 g ha−1) and pyrithiobac sodium (73 g ha−1) provided less than 7% Palmer amaranth control. Although flumioxazin alone at a labeled rate controlled Palmer amaranth 82% in the PRE experiment, PPO inhibitors by themselves applied POST provided no more than 37% control at 14 DAT. Effective foliar herbicides applied POST, including residual herbicides, should be made when Palmer amaranth are less than 10-cm tall for optimal control of these multiresistant Palmer amaranth accessions.

Weed Science ◽  
2016 ◽  
Vol 64 (2) ◽  
pp. 240-247 ◽  
Author(s):  
William T. Molin ◽  
Vijay K. Nandula ◽  
Alice A. Wright ◽  
Jason A. Bond

Transfer of herbicide resistance among closely related weed species is a topic of growing concern. A spiny amaranth × Palmer amaranth hybrid was confirmed resistant to several acetolactate synthase (ALS) inhibitors including imazethapyr, nicosulfuron, pyrithiobac, and trifloxysulfuron. Enzyme assays indicated that the ALS enzyme was insensitive to pyrithiobac and sequencing revealed the presence of a known resistance conferring point mutation, Trp574Leu. Alignment of the ALS gene for Palmer amaranth, spiny amaranth, and putative hybrids revealed the presence of Palmer amaranth ALS sequence in the hybrids rather than spiny amaranth ALS sequences. In addition, sequence upstream of the ALS in the hybrids matched Palmer amaranth and not spiny amaranth. The potential for transfer of ALS inhibitor resistance by hybridization has been demonstrated in the greenhouse and in field experiments. This is the first report of gene transfer for ALS inhibitor resistance documented to occur in the field without artificial/human intervention. These results highlight the need to control related species in both field and surrounding noncrop areas to avoid interspecific transfer of resistance genes.


2021 ◽  
pp. 1-7
Author(s):  
Jatinder S. Aulakh ◽  
Parminder S. Chahal ◽  
Vipan Kumar ◽  
Andrew J. Price ◽  
Karl Guillard

Abstract Palmer amaranth is the latest pigweed species documented in Connecticut; it was identified there in 2019. In a single-dose experiment, the Connecticut Palmer amaranth biotype survived the field-use rates of glyphosate (840 g ae ha−1) and imazaquin (137 g ai ha−1) herbicides applied separately. Additional experiments were conducted to (1) determine the level of resistance to glyphosate and acetolactate synthase (ALS) inhibitors in the Connecticut-resistant (CT-Res) biotype using whole-plant dose-response bioassays, and (2) evaluate the response of the CT-Res biotype to POST herbicides commonly used in Connecticut cropping systems. Based on the effective dose required for 90% control (ED90), the CT-Res biotype was 10-fold resistant to glyphosate when compared with the Kansas-susceptible (KS-Sus) biotype. Furthermore, the CT-Res biotype was highly resistant to ALS-inhibitor herbicides; only 18% control was achieved with 2,196 g ai ha−1 imazaquin. The CT-Res biotype was also cross-resistant to other ALS-inhibitor herbicides, including chlorimuron-ethyl (13.1 g ai ha−1), halosulfuron-methyl (70 g ai ha−1), and sulfometuron-methyl (392 g ai ha−1). The CT-Res Palmer amaranth was controlled 75% to 100% at 21 d after treatment (DAT) with POST applications of 2,4-D (386 g ae ha−1), carfentrazone-ethyl (34 g ai ha−1), clopyralid (280 g ae ha−1), dicamba (280 g ae ha−1), glufosinate (595 g ai ha−1), lactofen (220 g ai ha−1), oxyfluorfen (1,121g ai ha−1), and mesotrione (105 g ai ha−1) herbicides. Atrazine (2,240 g ai ha−1) controlled the CT-Res biotype only 52%, suggesting the biotype is resistant to this herbicide as well. Here we report the first case of Palmer amaranth from Connecticut with multiple resistance to glyphosate and ALS inhibitors. Growers should proactively use all available weed control tactics, including the use of effective PRE and alternative POST herbicides (tested in this study), for effective control of the CT-Res biotype.


Weed Science ◽  
2017 ◽  
Vol 66 (2) ◽  
pp. 149-158 ◽  
Author(s):  
Vijay K. Varanasi ◽  
Chad Brabham ◽  
Jason K. Norsworthy ◽  
Haozhen Nie ◽  
Bryan G. Young ◽  
...  

Palmer amaranth is one of the most problematic weeds in the midsouthern United States, and the evolution of resistance to protoporphyrinogen oxidase (PPO) inhibitors in biotypes already resistant to glyphosate and acetolactate synthase (ALS) inhibitors is a major cause of concern to soybean and cotton growers in these states. A late-season weed-escape survey was conducted in the major row crop–producing counties (29 counties) to determine the severity of PPO-inhibitor resistance in Arkansas. A total of 227 Palmer amaranth accessions were sprayed with fomesafen at 395 g ha−1to identify putative resistant plants. A TaqMan qPCR assay was used to confirm the presence of the ΔG210 codon deletion or the R128G/M (homologous to R98 mutation in common ragweed) target-site resistance mechanisms in thePPX2gene. Out of the 227 accessions screened, 44 were completely controlled with fomesafen, and 16 had only one or two severely injured plants (≥98% mortality) when compared with the 1986 susceptible check (100% mortality). The remaining 167 accessions were genotypically screened, and 82 (49%) accessions were found to harbor the ΔG210 deletion in thePPX2gene. The R128G was observed in 47 (28%) out of the 167 accessions screened. The mutation R128M, on the other hand was rare, found in only three accessions. About 13% of the accessions were segregating for both the ΔG210 and R128G mutations. Sixteen percent of the tested accessions had mortality ratings <90% and did not test positive for the ΔG210 or the R128G/M resistance mechanisms, indicating that a novel target or non–target site resistance mechanism is likely. Overall, PPO inhibitor–resistant Palmer amaranth is widespread in Arkansas, and the ΔG210 resistance mechanism is especially dominant in the northeast corridor, while the R128G mutation is more prevalent in counties near Memphis, TN.


2019 ◽  
Vol 33 (2) ◽  
pp. 349-354 ◽  
Author(s):  
Vijay K. Varanasi ◽  
Chad Brabham ◽  
Nicholas E. Korres ◽  
Jason K. Norsworthy

AbstractPalmer amaranth is one of the most problematic weeds in cropping systems of North America, especially in midsouthern United States, because of its competitive ability and propensity to evolve resistance to several herbicide sites of action. Previously, we confirmed and characterized the first case of nontarget site resistance (NTSR) to fomesafen in a Palmer amaranth accession from Randolph County, AR (RCA). The primary basis of the present study was to evaluate the cross- and multiple-resistance profile of the RCA accession. The fomesafen dose-response assay in the presence of malathion revealed a lower level of RCA resistance when compared with fomesafen alone. The resistance index of the RCA accession, based on 50% biomass reduction, ranged from 63-fold (fomesafen alone) to 22-fold (malathion plus fomesafen), when compared with a 2007 susceptible, and 476-fold and 167-fold, respectively, relative to a 1986 susceptible check. The RCA accession was resistant to other protoporphyrinogen oxidase (PPO) inhibitors (i.e., flumioxazin, acifluorfen, saflufenacil) as well as the 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor tembotrione and acetolactate synthase (ALS) inhibitor pyrithiobac sodium. Sequencing of theALSgene revealed no point mutations, indicating that a target-site mechanism is not involved in conferring ALS-inhibitor resistance in the RCA accession. Of the three PPO-inhibiting herbicides tested in combination with the malathion, saflufenacil resulted in the greatest biomass reduction (80%;P< 0.05) and lowest survival rate (23%;P< 0.05) relative to nontreated plants. The application of cytochrome P450 or glutathioneS-transferase inhibitors with fomesafen did not lead to any adverse effects on soybean, suggesting a possible role for these compounds for management of NTSR under field conditions. These results shed light on the relative unpredictability of NTSR in conferring herbicide cross- and multiple resistance in Palmer amaranth.


2021 ◽  
pp. 1-23
Author(s):  
Jasmine Mausbach ◽  
Suat Irmak ◽  
Debalin Sarangi ◽  
John Lindquist ◽  
Amit J. Jhala

Abstract Palmer amaranth is the most problematic and troublesome weed in agronomic cropping systems in the United States. Acetolactate synthase (ALS) inhibitor- and glyphosate-resistant (GR) Palmer amaranth has been confirmed in Nebraska and it is widespread in several counties. Soybean resistant to isoxaflutole/glufosinate/glyphosate has been developed that provides additional herbicide site of action for control of herbicide-resistant weeds. The objectives of this study were to evaluate herbicide programs for control of ALS inhibitor/GR Palmer amaranth and their effect on Palmer amaranth density and biomass, as well as soybean injury and yield in isoxaflutole/glufosinate/glyphosate-resistant soybean. Field experiments were conducted in a grower’s field infested with ALS inhibitor- and GR Palmer amaranth near Carleton, Nebraska, in 2018 and 2019. Isoxaflutole applied alone or mixed with sulfentrazone/pyroxasulfone, flumioxazin/pyroxasulfone, or imazethapyr/saflufenacil/pyroxasulfone provided similar control (86%-99%) of Palmer amaranth 21 d after PRE (DAPRE). At 14 d after early-POST (DAEPOST), isoxaflutole applied PRE and PRE followed by (fb) POST controlled Palmer amaranth 10% to 63% compared to 75% to 96% control with glufosinate applied EPOST in both years. A PRE herbicide fb glufosinate controlled Palmer amaranth 80% to 99% 21 d after late-POST (DALPOST) in 2018 and reduced density 89% to 100% in 2018 and 58% to 100% in 2019 at 14 DAEPOST. No soybean injury was observed from any of the herbicide programs tested in this study. Soybean yield in 2019 was relatively higher due to higher precipitation compared with 2018 with generally no differences between herbicide programs. This research indicates that herbicide programs are available for effective control of ALS inhibitor/GR Palmer amaranth in isoxaflutole/glufosinate/glyphosate-resistant soybean.


Author(s):  
Alysha T Torbiak ◽  
Robert Blackshaw ◽  
Randall N Brandt ◽  
Bill Hamman ◽  
Charles M. Geddes

Kochia [Bassia scoparia (L.) A.J. Scott] is an invasive C4 tumbleweed in the Great Plains of North America, where it impedes crop harvest and causes significant crop yield losses. Rapid evolution and spread of glyphosate- and acetolactate synthase (ALS) inhibitor-resistant kochia in western Canada limit the herbicide options available for control of these biotypes in field pea (Pisum sativum L.); one of the predominant pulse crops grown in this region. Field experiments were conducted near Lethbridge, Alberta in 2013-2015 and Coalhurst, Alberta in 2013-2014 to determine which herbicide options effectively control glyphosate- and ALS inhibitor-resistant kochia in field pea. Visible injury of field pea was minor (0-4%) in all environments except for Lethbridge 2013, where pre-plant (PP) flumioxazin and all treatments containing post-emergence (POST) imazamox/bentazon resulted in unacceptable (14-23%) pea visible injury. Herbicide impacts on pea yield were minor overall. Carfentrazone + sulfentrazone PP and saflufenacil PP followed by imazamox/bentazon POST resulted in ≥80% visible control of kochia in all environments, while POST imazamox/bentazon alone resulted in ≥80% reduction in kochia biomass in all environments compared with the untreated control (albeit absent of statistical difference in Coalhurst 2014). These results suggest that layering the protoporhyrinogen oxidase-inhibiting herbicides saflufenacil or carfentrazone + sulfentrazone PP with the ALS- and photosystem II-inhibiting herbicide combination imazamox/bentazon POST can effectively control glyphosate- and ALS inhibitor-resistant kochia in field pea while also mitigating further selection for herbicide resistance through the use of multiple effective herbicide modes-of-action.


Weed Science ◽  
1998 ◽  
Vol 46 (1) ◽  
pp. 24-29 ◽  
Author(s):  
Terry R. Wright ◽  
Donald Penner

Acetolactate synthase (ALS)-inhibiting herbicide carryover in soil can severely affect sugarbeets grown in the year(s) following application. Two newly developed imidazolinone-resistant (IMI-R) sugarbeet somatic cell selections (Sir-13 and 93R30B) were examined for magnitude of resistance and extent of cross-resistance to other classes of ALS inhibitors and compared to a previously developed sulfonylurea-resistant (SU-R) selection, Sur. In vitro shoot culture tests indicated Sir-13 resistance was specific to imidazolinone (IMI) herbicides at approximately a 100-fold resistance compared to the sensitive control sugarbeet. Sur was 10,000-fold resistant to the sulfonylurea (SU) herbicide, chlorsulfuron, and 40-fold resistant to the triazolopyrimidine sulfonanilide (TP) herbicide, flumetsulam, but not cross-resistant to the IMI herbicides. 93R30B was selected for IMI-R from a plant homozygous for the SU-R allele,Sur, and displayed similar in vitro SU-R and TP-R as Sur, but also displayed a very high resistance to various IMI herbicides (400- to 3,600-fold). Compared to the sensitive control, Sir-13 was 300- and > 250-fold more resistant to imazethapyr and imazamox residues in soil, respectively. Response by whole plants to postemergence herbicide applications was similar to that observed in shoot cultures. Sir-13 exhibited > 100-fold resistance to imazethapyr as well as imazamox, and 93R30B showed > 250-fold resistance to both herbicides. 93R30B showed great enough resistance to imazamox to merit consideration of imazamox for use as a herbicide in these sugarbeets. Sir-13 showed a two- to threefold higher level of resistance in the homozygous vs. heterozygous state, indicating that like most ALS-inhibitor resistance traits, it was semidominantly inherited.


2007 ◽  
Vol 21 (4) ◽  
pp. 863-868 ◽  
Author(s):  
Nilda R. Burgos ◽  
Lynn P. Brandenberger ◽  
Erin N. Stiers ◽  
Vinod K. Shivrain ◽  
Dennis R. Motes ◽  
...  

Chemical options for weed control in commercial cowpea production are limited. Repeated long-term use of the acetolactate synthase (ALS) inhibitor, imazethapyr, has resulted in selection for ALS-resistant populations of Palmer amaranth. Experiments were conducted at Bixby, OK, and Kibler, AR, from 2001 to 2003 to evaluate the tolerance of cowpea cultivars and advanced breeding lines to fomesafen, a potential alternative for controlling ALS-resistant Palmer amaranth and other problematic broadleaf weeds. Eight commercial cultivars and 42 advanced breeding lines were entered in the preliminary screening, using 0.84 kg/ha fomesafen. Six breeding lines were selected for the first replicated trial and three (00-582, 00-584, and 00-609) were advanced to across-location experiments. Fomesafen doses of 0, 0.17, 0.34, and 0.67 kg/ha were tested across locations. ‘Early Scarlet’ was used as commercial standard. The advanced lines had equal or higher yield potential (1,182 to 1,936 kg/ha) than Early Scarlet (1,108 kg/ha) across locations. Of the cultivars tested, line 00-609 was the best yielder, whereas 00-584 had the highest tolerance to fomesafen. At the commercial fomesafen rate of 0.34 kg/ha, 00-584 had higher yield (974 and 1,735 kg/ha, respectively, at Bixby, OK, and Kibler, AR) than the nontreated, weed-free, Early Scarlet. Thus, fomesafen can be used on the tolerant line, 00-584, without reducing yield potential relative to Early Scarlet.


1995 ◽  
Vol 9 (4) ◽  
pp. 696-702 ◽  
Author(s):  
Chae Soon Kwon ◽  
James J. Kells ◽  
Donald Penner

Greenhouse studies were conducted to determine the response of six corn hybrids and two soybean varieties to acetolactate synthase (ALS) inhibitor herbicides applied with terbufos and/or piperonyl butoxide (PBO), a mixed function oxidase (MFO) inhibitor. Field experiments also were conducted to determine the response of six corn hybrids to the combination treatments, terbufos plus ALS inhibitor herbicides and/or PBO and/or antidote. PBO at 0.33 kg/ha tank-mixed with nicosulfuron and primisulfuron injured the Northrup King 9283 corn hybrid. Great Lakes 584 corn was less sensitive than Northrup King 9283 to these combination treatments. Pioneer 3377 IR corn hybrid was resistant to the combination of nicosulfuron or primisulfuron plus PBO at 2 kg/ha and also to the combination treatments of imazethapyr herbicide plus PBO even though terbufos was previously applied. ICI 8532 IT, ICI 8532, and Pioneer 3377 hybrids were injured by the combination of nicosulfuron or primisulfuron and/or terbufos and/or PBO at 2 kg/ha. ICI 8532 IT corn hybrid was not injured by the combination treatment of imazethapyr or thifensulfuron and terbufos. In the field studies, Pioneer 3377 IR and Ciba 4393 RSC hybrids were resistant to sulfonylurea and imidazolinone herbicides even when applied with PBO regardless of the presence of terbufos. All treatments of chlorimuron plus terbufos caused considerable injury to ICI 8532 IT, ICI 8532, Pioneer 3377, and Ciba 4393, but not Pioneer 3377 IR and Ciba 4393 RSC. The combination of thifensulfuron with PBO injured Elgin ‘87 soybean, but the W20 soybean was tolerant to this combination treatment. Combination of imazethapyr with PBO did not affect the growth of Elgin ‘87 soybean.


Weed Science ◽  
2016 ◽  
Vol 64 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Patrick E. McCullough ◽  
Jialin Yu ◽  
J. Scott McElroy ◽  
S. Chen ◽  
H. Zhang ◽  
...  

Acetolactate synthase (ALS) inhibitors are widely used for POST control of sedges in turfgrass. A suspected resistant (R) biotype of annual sedge was collected from a bermudagrass turf in Georgia with a history of exclusive use of halosulfuron. Research was conducted to evaluate the resistance level of this biotype to halosulfuron, efficacy of ALS-inhibiting herbicides and other mechanisms of action for control, and the molecular and physiological basis for resistance. In greenhouse experiments, the halosulfuron rate required to reduce shoot biomass 50% in comparison with the nontreated at 8 wk after treatment (WAT) were 8 and > 1,120 g ai ha−1for the S (susceptible) and R biotypes, respectively. Imazapic, sulfosulfuron, and trifloxysulfuron reduced biomass of the S biotype greater than 60% at 8 WAT, but biomass was reduced less than 20% for the R biotype. Glufosinate, glyphosate, MSMA, and sulfentrazone reduced shoot biomass of the R biotype by 93, 86, 97, and 45%, respectively. In laboratory experiments, the halosulfuron concentration required to inhibit ALS activity by 50% in excised leaf tissues was 5.8 and > 1,000 μM for the S and R biotypes, respectively. Gene sequencing of the R biotype revealed a Pro-197-Ser substitution that confers resistance to ALS inhibitors. This is the first report of ALS-inhibitor resistance in annual sedge and herbicide resistance in a sedge species from a turfgrass system.


Sign in / Sign up

Export Citation Format

Share Document