plant assays
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 18)

H-INDEX

10
(FIVE YEARS 3)

Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 70
Author(s):  
Rafael Antón-Herrero ◽  
Carlos García-Delgado ◽  
Begoña Mayans ◽  
Raquel Camacho-Arévalo ◽  
Laura Delgado-Moreno ◽  
...  

Due to the environmental issues that conventional fertilization is causing, biostimulants are proposed as environmentally friendly alternative for crop nutrition in agriculture. The aim of this study was to determine the effects of new Micro Carbon Technology (MCT®) fertilizers with biostimulant activity based on humic acids biologically digested from leonardite on pepper plant growth in three different soils with different textures. The assays were performed under controlled conditions in a growth chamber and in commercial greenhouses in Spain. The effects on soil were analyzed after the addition of the fertilizers by microbial respiration and enzymatic activities (hydrolase, dehydrogenase and urease). For the plant assays, biometric parameters (fresh weight and fruit hardness) and foliar analysis (chlorophyll indices and nutrients) were evaluated. Under controlled conditions, the use of these biostimulants resulted in a greater soil microbial activity in a 24 h interval with increased soil enzymatic activity. In plants, a positive correlation was found between fertilizers with biostimulant activity and Dualex indices of leaves and content of macronutrients Ca and Mg. In commercial greenhouses, the fertilizers with biostimulant activity strongly depended on the soil texture. In conclusion, these products have real potential to replace conventional fertilizers in commercial production fields.


2021 ◽  
Author(s):  
Rodrigo A. Olarte ◽  
Rebecca Hall ◽  
Javier Tabima ◽  
Dean Malvick ◽  
Kathryn Bushley

Sudden death syndrome (SDS) of soybean is a damaging disease caused by the fungus Fusarium virguliforme. Since this pathogen was first reported in the southern US state of Arkansas in 1971, it has spread throughout the Midwestern U.S. The SDS pathogen primarily colonizes roots but also produces toxins that translocate to and damage leaves. Previous studies detected little to no genetic differentiation among isolates, suggesting F. virguliforme in North America has limited genetic diversity and a clonal population structure. Yet, isolates vary in virulence to roots and leaves. We characterized a set of F. virguliforme isolates from the Midwestern U.S. representing a south to north latitudinal gradient from Arkansas to Minnesota. Ten previously tested microsatellite loci were used to genotype isolates and plant assays were conducted to assess virulence. Three distinct population clusters were differentiated across isolates. Although isolates ranged in virulence classes from low to very high, little correlation was found between virulence phenotype and cluster membership. Similarly, population structure and geographic location were not highly correlated. However, the earliest diverging cluster had the lowest genetic diversity and was detected only in southern states, while the other two clusters were distributed across the Midwest and were predominant in Minnesota. One of the Midwestern clusters had the greatest genetic diversity and was found along the northern edge of the known distribution. The results support three genetically distinct population clusters of F. virguliforme in the U.S., with two clusters contributing most to spread of this fungus across the Midwest.


Author(s):  
Mieke van der Heyde ◽  
Michael Bunce ◽  
Kingsley Dixon ◽  
Kristen Fernandes ◽  
Jonathan Majer ◽  
...  

Invertebrates are important for restoration processes as they are key drivers of many landscape-scale ecosystem functions, including pollination, nutrient cycling and soil formation. However, invertebrates are often overlooked in restoration monitoring because they are highly diverse, poorly described, and time-consuming to survey, and require increasingly scarce taxonomic expertise to enable identification. DNA metabarcoding is a relatively new tool for rapid survey that is able to address some of these concerns, and provide information about the taxa with which invertebrates are interacting via food webs and habitat. Here we evaluate how invertebrate communities may be used to determine ecosystem trajectories during restoration. We collected ground-dwelling and airborne invertebrates across chronosequences of mine-site restoration in three ecologically disparate locations in Western Australia and identified invertebrate and plant communities using DNA metabarcoding. Ground-dwelling invertebrates showed the clearest restoration signals, with communities becoming more similar to reference communities over time. These patterns were weaker in airborne invertebrates, which have higher dispersal abilities and therefore less local fidelity to environmental conditions. Although we detected directional changes in community composition indicative of invertebrate recovery, patterns observed were inconsistent between study locations. The inclusion of plant assays allowed identification of plant species, as well as potential food sources and habitat. We demonstrate that DNA metabarcoding of invertebrate communities can be used to evaluate restoration trajectories. Testing and incorporating new monitoring techniques such as DNA metabarcoding is critical to improving restoration outcomes.


2021 ◽  
Vol 7 (9) ◽  
pp. 733
Author(s):  
Alejandra Vielba-Fernández ◽  
Álvaro Polonio ◽  
Laura Ruiz-Jiménez ◽  
Antonio de Vicente ◽  
Alejandro Pérez-García ◽  
...  

Powdery mildew is caused by Podosphaera xanthii, and is one of the most important diseases that attacks Spanish cucurbit crops. Fungicide application is the primary control tool; however, its effectiveness is hampered by the rapid development of resistance to these compounds. In this study, the EC50 values of 26 isolates were determined in response to the succinate dehydrogenase inhibitor (SDHI) fungicides boscalid and fluopyram. From these data, the discriminatory doses were deduced and used for SDHI resistance monitoring during the 2018 and 2019 growing seasons. Of the 298 isolates analysed, 37.9% showed resistance to boscalid and 44% to fluopyram. Although different phenotypes were observed in leaf disc assays, the resistant isolates showed the same phenotype in plant assays. Compared to sensitive isolates, two amino acid changes were found in the SdhC subunit, A86V and G151R, which are associated mostly with resistance patterns to fluopyram and boscalid, respectively. Furthermore, no significant differences were observed in terms of fitness cost between the selected sensitive and resistant isolates analysed here. Lastly, a loop-mediated isothermal amplification (LAMP) assay was developed to detect A86V and G151R mutations using conidia obtained directly from infected material. Our results show that growers could continue to use boscalid and fluopyram, but resistance management practices must be implemented.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kumud Joshi ◽  
Joshua L. Baumgardner ◽  
Madison MacPhail ◽  
Shailesh R. Acharya ◽  
Elizabeth Blotevogel ◽  
...  

The soybean aphid (Aphis glycines) continues to threaten soybean production in the United States. A suite of management strategies, such as planting aphid-resistant cultivars, has been successful in controlling soybean aphids. Several Rag genes (resistance against A. glycines) have been identified, and two are currently being deployed in commercial soybean cultivars. However, the mechanisms underlying Rag-mediated resistance are yet to be identified. In this study, we sought to determine the nature of resistance conferred by the Rag5 gene using behavioral, molecular biology, physiological, and biochemical approaches. We confirmed previous findings that plants carrying the Rag5 gene were resistant to soybean aphids in whole plant assays, and this resistance was absent in detached leaf assays. Analysis of aphid feeding behaviors using the electrical penetration graph technique on whole plants and detached leaves did not reveal differences between the Rag5 plants and Williams 82, a susceptible cultivar. In reciprocal grafting experiments, aphid populations were lower in the Rag5/rag5 (Scion/Root stock) chimera, suggesting that Rag5-mediated resistance is derived from the shoots. Further evidence for the role of stems comes from poor aphid performance in detached stem plus leaf assays. Gene expression analysis revealed that biosynthesis of the isoflavone kaempferol is upregulated in both leaves and stems in resistant Rag5 plants. Moreover, supplementing with kaempferol restored resistance in detached stems of plants carrying Rag5. This study demonstrates for the first time that Rag5-mediated resistance against soybean aphids is likely derived from stems.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0245380
Author(s):  
Vamsi J. Nalam ◽  
Jinlong Han ◽  
William Jacob Pitt ◽  
Shailesh Raj Acharya ◽  
Punya Nachappa

Aphid feeding behavior and performance on a given host plant are influenced by the plants’ physical and chemical traits, including structural characters such as trichomes and nutritional composition. In this study, we determined the feeding behavior and performance of soybean aphids (Aphis glycines) on the stem, the adaxial (upper), and the abaxial (lower) leaf surfaces during early vegetative growth of soybean plants. Using the electrical penetration graph technique, we found that aphids feeding on the stem took the longest time to begin probing. Once aphids began probing, the sieve elements were more conducive to feeding, as evidenced by less salivation on the stem than either leaf surface. In whole-plant assays, stems harbored higher aphid populations, and aphids had shorter development time on stems than the adaxial and the abaxial leaf surfaces. We compared trichome density and length on the stem, the adaxial, and the abaxial leaf surfaces to investigate whether plant trichomes affected aphid feeding and performance. There were higher density and longer trichomes on stems, which likely resulted in aphids taking a longer time to probe. Still a negative impact on aphid population growth was not observed. Analysis of phloem sap composition revealed that vascular sap-enriched exudates from stems had higher sugars and amino acids than exudates from leaves. In artificial diet feeding assays, the population of aphids reared on a diet supplemented with stem exudates was higher than on a diet supplemented with leaf petiole exudates which is in agreement with results of the whole-plant assays. In summary, our findings suggest that the performance of soybean aphids on a specific plant location is primarily driven by accessibility and the quality of phloem composition rather than structural traits.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Sonia Irigoyen ◽  
Manikandan Ramasamy ◽  
Shankar Pant ◽  
Prakash Niraula ◽  
Renesh Bedre ◽  
...  

AbstractA major bottleneck in identifying therapies to control citrus greening and other devastating plant diseases caused by fastidious pathogens is our inability to culture the pathogens in defined media or axenic cultures. As such, conventional approaches for antimicrobial evaluation (genetic or chemical) rely on time-consuming, low-throughput and inherently variable whole-plant assays. Here, we report that plant hairy roots support the growth of fastidious pathogens like Candidatus Liberibacter spp., the presumptive causal agents of citrus greening, potato zebra chip and tomato vein greening diseases. Importantly, we leverage the microbial hairy roots for rapid, reproducible efficacy screening of multiple therapies. We identify six antimicrobial peptides, two plant immune regulators and eight chemicals which inhibit Candidatus Liberibacter spp. in plant tissues. The antimicrobials, either singly or in combination, can be used as near- and long-term therapies to control citrus greening, potato zebra chip and tomato vein greening diseases.


2020 ◽  
Vol 46 (11-12) ◽  
pp. 1082-1089
Author(s):  
Mirka Macel ◽  
Isabella G. S. Visschers ◽  
Janny L. Peters ◽  
Nicole M. van Dam ◽  
Rob M. de Graaf

AbstractThe cuticular wax layer can be important for plant resistance to insects. Thrips (Frankliniella occidentalis) damage was assessed on 11 pepper accessions of Capsicum annuum and C. chinense in leaf disc and whole plant assays. Thrips damage differed among the accessions. We analyzed the composition of leaf cuticular waxes of these accessions by GC-MS. The leaf wax composition was different between the two Capsicum species. In C. annuum, 1-octacosanol (C28 alcohol) was the most abundant component, whereas in C. chinense 1-triacotanol (C30 alcohol) was the prominent. Thrips susceptible accessions had significantly higher concentrations of C25-C29n-alkanes and iso-alkanes compared to relatively resistant pepper accessions. The triterpenoids α- and ß-amyrin tended to be more abundant in resistant accessions. Our study suggests a role for very long chain wax alkanes in thrips susceptibility of pepper.


Plant Disease ◽  
2020 ◽  
Author(s):  
Douglas Higgins ◽  
Ross Joaquin Hatlen ◽  
Jan Byrne ◽  
Monique L Sakalidis ◽  
Timothy D Miles ◽  
...  

Michigan’s hop acreage ranks fourth nationally, but the state’s growers contend with unique disease challenges resulting from frequent rainfall and high humidity. In August 2018, a Michigan hop grower reported necrosis and blighting of foliage and shattering of cones resulting in yield loss. Irregular-shaped lesions developed on leaves, surrounded by a halo of chlorotic tissue and cone bracts became brown. Pycnidia were observed in symptomatic tissue. The goal of this study was to identify and characterize the causal agent of symptoms in leaf and cone tissue. In symptomatic leaves, 15 of 19 isolates recovered had 96.4% internal transcribed spacer (ITSrDNA) homology with Diaporthe nomurai. Bayesian and maximum likelihood analysis were performed on a subset of isolates using ITSrDNA, histone H3, beta-tubulin, and elongation factor one alpha. Bootstrap and posterior probabilities supported a unique cluster of Diaporthe sp. 1-MI isolates most closely related to the D. arecae species complex, D. hongkongensis and D. multigutullata. Diaporthe sp. 1-MI was pathogenic in detached leaf and whole plant assays. Single-spore isolates from pycnidia originating from cones and leaves shared 100% ITSrDNA homology with Diaporthe sp. 1-MI obtained from the lesion margins of leaves collected in 2018. The distribution of Diaporthe sp. 1-MI was widespread amongst cones (n = 347) collected from Michigan hop yards (n = 15) and accounted for > 38% of fungi recovered from cones in three hop yards. Diaporthe sp. 1-MI causing halo and cone blight presents a new disease management challenge for Michigan hop growers.


Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 705 ◽  
Author(s):  
Elodie Peghaire ◽  
Samar Hamdache ◽  
Antonin Galien ◽  
Mohamad Sleiman ◽  
Alexandra ter Halle ◽  
...  

Red maple leaf extracts (RME) were tested for their plant defense inducer (PDI) properties. Two extracts were obtained and compared by different approaches: RME1 using ethanol–water (30–70%, v/v, 0.5% HCl 1N) and RME2 using pure water. Both extracts titrated at 1.9 g L−1 in polyphenols and infiltrated into tobacco leaves efficiently induced hypersensitive reaction-like lesions with topical accumulation of auto-fluorescent compounds noted under UV and scopoletin titration assays. The antimicrobial marker PR1, β−1,3-glucanase PR2, chitinase PR3, and osmotin PR5 target genes were all upregulated in tobacco leaves following RME1 treatment. The alkaline hydrolysis of RME1 and RME2 combined with HPLC titration of gallic acid revealed that gallate functions were present in both extracts at levels comprised between 185 and 318 mg L−1. HPLC-HR-MS analyses and glucose assay identified four gallate derivatives consisting of a glucose core linked to 5, 6, 7, and 8 gallate groups. These four galloyl glucoses possessed around 46% of total gallate functions. Their higher concentration in RME suggested that they may contribute significantly to PDI activity. These findings define the friendly galloyl glucose as a PDI and highlight a relevant methodology for combining plant assays and chemistry process to their potential quantification in crude natural extracts.


Sign in / Sign up

Export Citation Format

Share Document